Performance tuning

Rudder and some applications used by Rudder (like the Apache web server, or Jetty) can be tuned to your needs.

Reports retention

To lower disk usage on Rudder Server, you can lower the retention duration for execution reports in /opt/rudder/etc/ file with the options:

  • rudder.batch.reportscleaner.archive.TTL=0

  • rudder.batch.reportscleaner.delete.TTL=3

  • rudder.batch.reportscleaner.compliancelevels.delete.TTL=0

To disable compliance storing, and lower the number of reports in database.

Apache web server

The Apache web server is used by Rudder as a proxy, to connect to the Jetty application server, and to receive inventories using the WebDAV protocol.

There are tons of documentation about Apache performance tuning available on the Internet, but the defaults should be enough for most setups.


The Jetty application server is the service that runs Rudder web application and inventory endpoint. It uses the Java runtime environment (JRE).

The default settings fit the basic recommendations for minimal Rudder hardware requirements, but there are some configuration switches that you might need to tune to obtain better performance with Rudder, or correct e.g. timezone issues.

To look at the available optimization knobs, please take a look at /etc/default/rudder-jetty on your Rudder server.

Java "Out Of Memory Error"

It may happen that you get java.lang.OutOfMemoryError. They can be of several types, but the most common is: java.lang.OutOfMemoryError: Java heap space.

This error means that the web application needs more RAM than what was given. It may be linked to a bug where some process consumed much more memory than needed, but most of the time, it simply means that your system has grown and needs more memory.

You can follow the configuration steps described in the following paragraph.

Configure RAM allocated to Jetty

To change the RAM given to Jetty, you have to:

# edit +/etc/default/rudder-jetty+ with your preferred text editor, for example vim:
vim /etc/default/rudder-jetty

Notice: that file is alike to +/opt/rudder/etc/rudder-jetty.conf+, which is the file with
default values. +/opt/rudder/etc/rudder-jetty.conf+ should never be modified directly because
the modification would be erased by the next Rudder upgrade.

# modify JAVA_XMX to set the value to your need.
# The value is given in MB by default, but you can also use the "G" unit to specify a size in GB.


# save your changes, and restart Jetty:
systemctl restart rudder-jetty

On small installations (less than 1000 nodes), the amount of memory should be the half of the RAM of the server, rounded up to the nearest GB. For example, if the server has 5GB of RAM, 3GB should be allocated to Jetty.

On installations with more than 1000 nodes, two-third (rounded up to the nearest GB) should be allocated to Jetty. For example, if the server has 16GB of RAM, 11GB should be allocated to Jetty

Memory usage of the JVM

When RAM allocated to jetty reaches 4 to 6GB (or higher), you may experience long freeze of Rudder, up to several tens of seconds. If this is the case, and if you use Rudder 5.0.12 or newer, you can change the JVM garbage collector used by the JVM to one better fitted for larger memory footprint:

# edit +/etc/default/rudder-jetty+ with your preferred text editor, for example vim:
vim /etc/default/rudder-jetty

Notice: that file is alike to +/opt/rudder/etc/rudder-jetty.conf+, which is the file with
default values. +/opt/rudder/etc/rudder-jetty.conf+ should never be modified directly because
the modification would be erased by the next Rudder upgrade.

# Uncomment the lines related to "Java Garbage collector option"


# save your changes, and restart Jetty:
systemctl restart rudder-jetty

This option is also a good solution if you are constrained by the amount of memory available. The String deduplication option of G1GC saves between one fifth to one fourth of memory used by rudder-jetty.

Optimize PostgreSQL server

The default out-of-the-box configuration of PostgreSQL server is really not compliant for high end (or normal) servers. It uses a really small amount of memory.

The location of the PostgreSQL server configuration file is usually:

On a Debian system:


On a SUSE or RHEL/CentOS system:


Suggested values for a setup with more than 3000 nodes

# Amount of System V shared memory
# --------------------------------

shared_buffers = 256MB

# On old versions of PostgreSQL, you may need to set the proper amount of shared memory on the system.
#   $ sysctl -w kernel.shmmax=268435456
# Reference:
# Memory for complex operations
# -----------------------------
# Complex query:

temp_buffers = 32MB
work_mem = 6MB
max_stack_depth = 4MB

# Complex maintenance: index, vacuum:

maintenance_work_mem = 2GB

# Write ahead log
# ---------------
# Size of the write ahead log:

wal_buffers = 4MB

# Number of checkpoints
checkpoint_segments = 16

# Query planner
# -------------
# Gives hint to the query planner about the size of disk cache.
# Setting effective_cache_size to 1/2 of remaining memory would be a normal
# conservative setting:

effective_cache_size = 1024MB

Suggested values on a small server

shared_buffers = 64MB
work_mem = 4MB
maintenance_work_mem = 256MB
wal_buffers = 1MB
checkpoint_segments = 8
effective_cache_size = 128MB

Maximum number of file descriptors

If you manage thousands of nodes with Rudder, you should increase the open file limits as policy generation opens and write a lot of file.

If you experience the error

ERROR - Failure in boxToEither: Error when trying to open template template name

it means that you should increase the limit of open files You can change the system-wide maximum number of file descriptors in /etc/sysctl.conf if necessary:

fs.file-max = 3247518

Then you have to get the rudder application enough file descriptors. To do so, you have to override the rudder-jetty unit configuration:

# Or edit /etc/systemd/system/rudder-jetty.service.d/override.conf directly
systemctl edit rudder-jetty

And add:


Then run:

systemctl daemon-reload
systemctl restart rudder-jetty


On very large installation, with many reports sent to the rudder servers, some messages may be lost because the default UDP buffer is too small or because rsyslog doesn’t consume the reports fast enough. If you experience random missing reports, there are several changes that will improve the situation.

Increase the UDP buffer

sysctl -w net.core.rmem_max=26214400
sysctl -w net.core.rmem_default=26214400

Upgrade rsyslog to a more recent version

The version of rsyslog included in some distributions can be have trouble handling more than 1000 reports/seconds; our tests show that versions 8.1901.0 and later are necessay to consumme more than 1400 reports/seconds. List of rsyslog supported repositories can be found here: rsyslog repositories

Increase the number of threads for rsyslog

Edit the file /var/rudder/configuration-repository/techniques/system/distributePolicy/1.0/ on the rudder server, and replace the lines

$ModLoad imudp


module(load="imudp" threads="2")
input(type="imudp" port="&SYSLOGPORT&")

and increase the number of action queue workers

$ActionQueueWorkerThreads 2


$ActionQueueWorkerThreads 4

and then commit the change

cd /var/rudder/configuration-repository/techniques
git add system/distributePolicy/1.0/
git commit -m "Increase number of threads allocated to rsyslog"
rudder server reload-techniques

If you are using syslog over TCP as reporting protocol - which is not recommended (it is set in Administration → Settings → Protocol), you can experience issues with rsyslog on Rudder policy servers (root or relay) when managing a large number of nodes. This happens because using TCP implies the system has to keep track of the connections. It can lead to reach some limits, especially:

  • max number of open files for the user running rsyslog

  • size of network backlogs

  • size of the conntrack table

You have two options in this situation:

  • Switch to UDP (in Administration → Settings → Protocol). It is less reliable than TCP and you can lose reports in case of networking or load issues, but it will prevent breaking your server, and allow to manage more Nodes. Note that this is the default setting.

  • Stay on TCP. Do this only if you need to be sure you will get all your reports to the server. You will should follow the instructions below to tune your system to handle more connections.

All settings needing to modify /etc/sysctl.conf require to run sysctl -p to be applied.

Maximum number of TCP sessions in rsyslog

You may need to increase the maximum number of TCP sessions that rsyslog will accept. Add to your /etc/rsyslog.conf:

$ModLoad imtcp
# 500 for example, depends on the number of nodes and the agent run frequency
$InputTCPMaxSessions 500

Note: You can use MaxSessions instead of InputTCPMaxSessions on rsyslog >= 7.

Network backlog

You can also have issues with the network queues (which may for example lead to sending SYN cookies):

  • You can increase the maximum number of connection requests awaiting acknowledgment by changing net.ipv4.tcp_max_syn_backlog = 4096 (for example, the default is 1024) in /etc/sysctl.conf.

  • You may also have to increase the socket listen() backlog in case of bursts, by changing net.core.somaxconn = 1024 (for example, default is 128) in /etc/sysctl.conf.

Conntrack table

You may reach the size of the conntrack table, especially if you have other applications running on the same server. You can increase its size in /etc/sysctl.conf, see the Netfilter FAQ for details.


If you are using Rudder on a highly stressed machine, which has especially slow or busy I/O’s, you might experience a sluggish CFEngine agent run every time the machine tries to comply with your Rules.

This is because the agent tries to update its internal databases every time the agent executes a policy (the .lmdb files in the /var/rudder/cfengine-community/state directory), which even if the database is very light, takes some time if the machine has a very high iowait.

In this case, here is a workaround you can use to restore the agent’s full speed: you can use a RAMdisk to store its states.

You might use this solution either temporarily, to examine a slowness problem, or permanently, to mitigate a known I/O problem on a specific machine. We do not recommend as of now to use this on a whole IT infrastructure.

Be warned, this solution has a drawback: you should backup and restore the content of this directory manually in case of a machine reboot because all the persistent states are stored here, so in case you are using, for example the jobScheduler Technique, you might encounter an unwanted job execution because the agent will have "forgotten" the job state.

Also, note that the mode=0700 is important as agent will refuse to run correctly if the state directory is world readable, with an error like:

error: UNTRUSTED: State directory /var/rudder/cfengine-community (mode 770) was not private!

Here is the command line to use:

How to mount a RAMdisk on agent state directory
# How to mount the RAMdisk manually, for a "one shot" test:
mount -t tmpfs -o size=128M,nr_inodes=2k,mode=0700,noexec,nosuid,noatime,nodiratime tmpfs /var/rudder/cfengine-community/state

# How to put this entry in the fstab, to make the modification permanent
echo "tmpfs /var/rudder/cfengine-community/state tmpfs defaults,size=128M,nr_inodes=2k,mode=0700,noexec,nosuid,noatime,nodiratime 0 0" >> /etc/fstab
mount /var/rudder/cfengine-community/state

← Maintenance procedures Monitoring →