
Rudder User Documentation
i

Rudder User Documentation

Rudder User Documentation
ii

Copyright © 2011 Normation SAS

Rudder User Documentation by Normation is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
Permissions beyond the scope of this license may be available at normation.com.

Rudder User Documentation
iii

COLLABORATORS

TITLE :

Rudder User Documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY Jonathan Clarke,
Nicolas Charles, and

Fabrice
Flore-Thebault

october 2011

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.3.0 October 2011 First release of the Rudder User Documentation. NC, JC, FFT

Rudder User Documentation
iv

Contents

1 Introduction 1

1.1 Rudder functions . 1

1.2 Asset management concepts . 1

1.2.1 New Nodes . 1

1.2.2 Search Nodes . 1

1.2.3 Groups of Nodes . 2

1.3 Configuration management concepts . 2

1.4 Rudder components . 3

1.5 Specifications for Rudder Nodes . 4

1.6 Specifications for Rudder Root Server . 4

1.6.1 Hardware specifications . 4

1.6.2 Supported Operating Systems . 4

1.6.3 Packages . 5

1.6.4 Software dependencies and third party components . 7

1.7 Configure the network . 7

1.7.1 Mandatory flows . 7

1.7.2 Optional flows . 7

1.7.3 DNS - Name resolution . 8

2 Install Rudder Server 9

2.1 Prepare Rudder Root Server Installation . 9

2.2 Install Rudder Root server on Debian . 9

2.2.1 Add the main, contrib and non-free components . 9

2.2.2 Update the system . 9

2.2.3 Add the Rudder packages repository . 10

2.2.4 Install your Rudder Root Server . 10

2.3 Install Rudder Root server on SLES . 10

2.3.1 Configure the package manager . 10

2.3.2 Update the system . 10

2.3.3 Add the Rudder packages repository . 11

Rudder User Documentation
v

2.3.4 Install your Rudder Root Server . 11

2.4 Files installed by the application. 11

2.5 Initial configuration of your Rudder Root Server . 12

2.6 Validate the installation . 12

3 Install Rudder Agent 13

3.1 Components . 13

3.2 Install Rudder Agent on Debian or Ubuntu . 13

3.2.1 Add the Rudder packages repository . 13

3.2.2 Install your Rudder Agent . 14

3.3 Install Rudder Agent on RedHat or CentOS . 14

3.4 Install Rudder Agent on SuSE . 15

3.4.1 Add the Rudder packages repository . 15

3.4.2 Install your Rudder Agent . 15

3.5 Validation . 15

4 Rudder Web Interface 16

4.1 Authentication . 16

4.2 Presentation of Rudder Web Interface . 16

4.2.1 Rudder Home . 16

4.2.2 Asset Management . 16

4.2.3 Configuration Management . 17

4.2.4 Administration . 17

4.3 Units supported as search parameters . 18

4.3.1 Bytes and multiples . 18

4.3.2 Convenience notation . 18

4.3.3 Supported units . 18

5 Asset Management 20

5.1 Asset Inventory . 20

5.2 Accept new Nodes . 20

5.3 Search Nodes . 21

5.3.1 Quick Search . 21

5.3.2 Advanced Search . 21

5.4 Group of Nodes . 22

Rudder User Documentation
vi

6 Configuration Management 23

6.1 Policy Templates . 23

6.1.1 Concepts . 23

6.1.2 Manage the Policy Templates . 23

6.1.3 Available Policy Templates . 24

6.1.3.1 Application management . 24

6.1.3.2 Distributing files . 24

6.1.3.3 File state configuration . 24

6.1.3.4 System settings: Miscellaneous . 24

6.1.3.5 System settings: Networking . 24

6.1.3.6 System settings: Process . 25

6.1.3.7 System settings: Remote access . 25

6.1.3.8 System settings: User management . 25

6.2 Policy Instances . 25

6.3 Configuration rules . 26

7 Administration 27

7.1 Policy Server Management . 27

7.1.1 Configure allowed networks . 27

7.2 View Event Logs . 27

7.3 Plugin Management . 27

7.4 Restart the agent of the node . 27

7.5 Restart the root rudder service . 28

7.5.1 Restart everything . 28

7.5.2 Restart only one component . 28

7.6 Policy Template upgrade . 28

7.6.1 Dynamic groups by operating system . 29

7.6.2 Library of preventive policies . 29

7.6.3 Standardizing configurations . 29

7.7 User management . 29

7.7.1 Configuration of the users using a XML file . 30

7.7.1.1 Generality and uses of clear text password . 30

7.7.1.2 Use of hashed passwords . 30

7.7.2 Going further . 30

7.8 Password management . 31

7.8.1 Configuration of the postgres database password . 31

7.8.2 Configuration of the OpenLDAP manager password . 31

7.8.3 Configuration of the WebDAV access password . 32

7.9 Optimize Postgres . 32

Rudder User Documentation
vii

7.9.1 Suggested values on a large node . 33

7.9.1.1 Amount of System V shared memory . 33

7.9.1.2 Memory for complex operations . 33

7.9.1.3 Write ahead log . 33

7.9.1.4 Query planner . 33

7.9.2 Suggested values on a not so large node . 33

7.9.3 Installation of the Rudder Agent . 35

7.9.3.1 Static files . 35

7.9.3.2 Generated files . 35

7.9.3.3 Services . 35

7.9.3.4 Configuration . 35

7.9.4 Tasks executed by Rudder Agent on the Node . 35

7.9.4.1 Request data from Rudder Server . 36

7.9.4.2 Launch processes . 36

7.9.4.3 Identify Rudder Root Server . 36

7.9.4.4 Inventory . 36

7.9.4.5 Syslog . 36

7.9.4.6 Apply Policy Instances . 36

7.9.5 Rudder Agent interactive . 36

7.9.6 Processing new inventories on the server . 37

7.9.6.1 Verify the inventory has been received by the Rudder Root Server 37

7.9.6.2 Process incoming inventories . 37

7.9.6.3 Validate new Nodes . 37

7.9.6.4 Prepare policies for the Node . 38

7.10 Configuration files . 39

8 Glossary 50

Rudder User Documentation
viii

List of Figures

1.1 Concepts diagram . 3

1.2 Rudder packages and their dependancies . 5

4.1 Home menu . 16

4.2 Asset Management menu . 17

4.3 Configuration Management menu . 17

4.4 Administration menu . 18

6.1 Reports . 26

7.1 Rudder Agent workflow . 34

7.2 Generate policy workflow . 39

Rudder User Documentation
ix

List of Tables

4.1 Units supported by Rudder search engine . 19

7.1 Hashed passwords algorithms list . 30

Rudder User Documentation
x

Online version

You can also read the Rudder User Documentation on the Web.

http://rudder-project.org

Rudder User Documentation
1 / 52

Chapter 1

Introduction

This chapter presents the main concepts and the architecture of Rudder: what are the server types and their interactions.

Reading this chapter will help you to learn the terms used, and to prepare the deployment of a Rudder installation. === Concepts

1.1 Rudder functions

Rudder addresses two main functions:

1. Configuration management;

2. Asset management;

The configuration management function relies on the asset management function. The purpose of the asset management function
is to identify Nodes and some of their characteristics which can be useful to perform configuration management. The purpose of
configuration management is to apply rules on Nodes. A rule can include the installation of a tool, the configuration of a service,
the execution of a daemon, etc. To apply rules on Nodes, Rudder uses the informations produced by the asset management
function to identify these Nodes and evaluate some specific informations about them.

1.2 Asset management concepts

Each Node is running a Rudder Agent, which is sending regularly an inventory to the Rudder Server.

1.2.1 New Nodes

Following the first inventory, Nodes are placed in a transit zone. You can then view the detail of their inventory, and accept the
final Node in the Rudder database if desired. You may also reject the Node, if it is not a machine you would like to manage with
Rudder.

1.2.2 Search Nodes

An advanced search engine allows you to identify the required Nodes (by name, IP address, OS, versions, etc.)

Rudder User Documentation
2 / 52

1.2.3 Groups of Nodes

You will have to create sets of Nodes, called groups. These groups are derived from search results, and can either be static or a
dynamic :

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

1.3 Configuration management concepts

We adopted the following terms to describe the configurations in Rudder:

Policy Template This is a configuration skeleton, adapted to a function or a particular service (eg DNS resolver configuration).
This skeleton includes the configuration logic for this function or service, and can be set according to a list of variables (in
the same example: IP addresses of DNS servers, the default search box, . . .)

Policy Instance This is an instance of a Policy Template, which allows to set values for the parameters of the latter. Each Policy
Instance can have an unique name. A Policy Instance should be completed with a short and a long description, and a
collection of parameters for the variables defined by the Policy Template.

Configuration Rule It is the application of a policy to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

Applied Policy This is the result of the conversion of a Policy Instance into a set of CFEngine Promises for a particular Node.

As illustrated in this summary diagram, the configuration rules are linking the functions of inventory management and configu-
ration management.

Rudder User Documentation
3 / 52

Figure 1.1: Concepts diagram

1.4 Rudder components

The Rudder infrastructure uses three types of machines:

Rudder Node A Node is client computer managed by Rudder. To be managed, a Node must first be accepted as an authorized
node.

Rudder Root Server This is the core of the Rudder infrastructure. This server must be a dedicated machine (either virtual of
physical), and contains the main application components: the web interface, databases, configuration data, logs. . .

Rudder Relay Server Relay servers are not available in the current version. In a future version, these optional servers will let
you adapt your Rudder architecture to your existing network topology, by acting as a proxy for flows exchanged between
managed nodes and the root server.

Rudder User Documentation
4 / 52

1.5 Specifications for Rudder Nodes

The following operating systems are supported for Rudder Nodes and packages are available for these platforms:

• CentOS GNU/Linux 5

• Debian GNU/Linux 5 (Lenny)

• Debian GNU/Linux 6 (Squeeze)

• Microsoft Windows Server 2000

• Microsoft Windows Server 2003

• Microsoft Windows Server 2008

• RedHat Enterprise Linux 5

• SuSE Linux Enterprise Server (SLES) 10 SP3

• SuSE Linux Enterprise Server (SLES) 11 SP1

• Ubuntu 10.04 LTS (lucid)

• Ubuntu 10.10 (maverick)

Windows Nodes
Installing Rudder on Windows requires the commercial version of CFEngine (named Nova). Hence, as a starting point, we
suggest that you only use Linux machines. Once you are accustomed to Rudder, contact Normation to obtain a demo version
for Windows platforms.

Unsupported Operating Systems
It is possible to use Rudder on other platforms than the ones listed here. However, we haven’t tested the application
on them, and can’t currently supply any packages for them. Moreover, the Policy Templates are likely to fail. If you wish
to try Rudder on other systems, please contact us.

1.6 Specifications for Rudder Root Server

1.6.1 Hardware specifications

A dedicated server is strongly recommended.

Your Rudder Root Server can be either a physical or a virtual machine.

At least 1024 MB of RAM must be available on the server, depending on the base requirements of your operating system.

Rudder Server is running on both 32 and 64 bit versions of every supported Operating System.

1.6.2 Supported Operating Systems

The following operating systems are supported as a Root server:

• Debian GNU/Linux 5 (Lenny)

• Debian GNU/Linux 6 (Squeeze)

Rudder User Documentation
5 / 52

• SuSE Linux Enterprise Server (SLES) 11 SP1

Unsupported Operating Systems
Installing Rudder Servers on other operating systems is planned, but has not been tested with the current version.

1.6.3 Packages

Rudder components are distributed as a set of packages.

Figure 1.2: Rudder packages and their dependancies

rudder-webapp Package for the Rudder Web Application. It is the graphical interface for Rudder.

rudder-inventory-endpoint Package for the inventory reception service. It has no graphical interface. This service is
using HTTP as transport protocol. It receives an parses the files sent by FusionInventory and insert the valuable data into
the LDAP database.

rudder-jetty Application server for rudder-webapp and rudder-inventory-endpoint. Both packages are
written in Scala. At compilation time, they are converted into .war files. They need to be run in an application server.
Jetty is this application server. It depends on Oracle Java JRE.

rudder-policy-templates Package for the Policy Templates. They are installed in /opt/rudder/share/poli-
cy-templates. At runtime, the Policy Templates are copied into a git repository in /var/rudder. Therefore, the
package depends on the git package.

Rudder User Documentation
6 / 52

rudder-inventory-ldap Package for the database containing the inventory and configuration informations for each
pending and validated Nodes. This LDAP database is build upon OpenLDAP server. The OpenLDAP engine is contained
in the package.

rudder-reports Package for the database containing the logs sent by each Node and the reports computed by Rudder.
This is a PostgreSQL database using the PostgreSQL engine of the distribution. The package has a dependancy on the
postgresl package, creates the database named rudder and installs the inialisation scripts for that database in /op-
t/rudder/etc/postgresql/*.sql.

rudder-cfengine-community Package for the CFEngine server. This server delivers to the Nodes the Applied Policies
converted into CFEngine promises.

rudder-server-root Package to ease installation of every Rudder services. This package depends on all above packages.
It also

• installs the Rudder configuration script:

/opt/rudder/bin/rudder-init.sh

• installs the initial promises for the Root Server in:

/opt/rudder/share/initial-promises/

• installs the init scripts (and associated default file):

/etc/init.d/rudder-server-root

• installs the logrotate configuration:

/etc/logrotate.d/rudder-server-root

rudder-agent One single package integrates everything needed for the Rudder Agent. It contains CFEngine Commmunity,
FusionInventory, and the initial promises for a Node. It also contains an init script:

/etc/init.d/rudder-agent

The rudder-agent package depends on a few common libraries and utilities:

• OpenSSL

• libpcre

• libdb (4.6 on Debian)

• uuidgen (utility from uuid-runtime package on Debian)

Rudder User Documentation
7 / 52

1.6.4 Software dependencies and third party components

The Rudder Web application requires the installation of Apache 2 httpd, Oracle Java 6 JRE, and cURL; the LDAP Inventory
service needs rsyslog and the report service requires PostgreSQL.

When available, packages from your distribution are used. These packages are:

Apache The Apache Web server is used as a proxy to give HTTP access to the Web Application. It is also used to give writable
WebDAV access for the inventory. The Nodes send their inventory to the WebDAV service, the inventory is stored in
/var/rudder/inventories/incoming.

PostgreSQL The PostgreSQL database is used to store logs sent by the Nodes and reports generated by Rudder.

rsyslog and rsyslog-pgsql The rsyslog server is receiving the logs from the nodes and insert them into a PostgreSQL database.
On SLES, the rsyslog-pgsql package is not part of the distribution, it can be downloaded alongside Rudder packages.

Oracle Java JRE The Java runtime is needed by the Jetty application server. On Debian, the package from the distribution is
used. On SLES, the package must be dowloaded from Oracle website.

curl This package is used to send inventory files from /var/rudder/inventories/incoming to the Rudder Endpoint.

git The package is not a dependency, but its installation is recommended. The running Policy Templates Library is maintained
as a git repository in /var/rudder/policy-templates. It can be useful to have git installed on the system for
maintenance purpose.

1.7 Configure the network

1.7.1 Mandatory flows

The following flows from the Nodes to the Rudder Root Server has to be allowed:

Port 5309, TCP CFEngine communication port, used to communicate the policies to the rudder nodes.

Port 80, TCP, for nodes HTTP communication port, used to send inventory and fetch the id of the Rudder Server.

Port 514, TCP Syslog port, used to centralize reports.

Open the following flow from the clients desktop to the Rudder Root Server:

Port 80, TCP, for users HTTP communication port, used by the users to access to the web interface.

1.7.2 Optional flows

These flows are used to add features to Rudder:

"Big red button" A button, on the right top side of every page of Rudder web interface, to command the emergency stop of
the agents. This stop will be implicitly done in less than 10 minutes, or can be done immediately if the port 5309 TCP from
the Rudder Root Server (or each relay server) is open to each nodes. This feature is detailed in the user documentation.

CFEngine Nova Managing Windows machines requires the commercial version of CFEngine, called Nova. It needs to open
the port 5308 TCP from the Node to the Rudder Root Server.

Rudder User Documentation
8 / 52

1.7.3 DNS - Name resolution

Currently, Rudder relies on the Node declared hostnames to identify them. So it is required that each Node hostname can be
resolved to its IP address that will be used to contact the Rudder Server. We are aware that it is far from being ideal in most cases
(no DNS environement, private sub-networks, NAT, etc. . .), and we are currently working on an alternative solution.

If you do not have the wished name resolution, we advice that you should fill the IP address and hostname of the /etc/hosts
file of the Rudder Root Server.

Similarly, each Rudder Node must be able to resolve the Rudder Root Server hostname given in the step described in Initial
configuration of your Rudder Root Server.

Rudder User Documentation
9 / 52

Chapter 2

Install Rudder Server

This chapter covers the installation of a Rudder Root Server, from the specification of the underlying server, to the initial setup
of the application.

2.1 Prepare Rudder Root Server Installation

The following chapter describes the steps to configure the Rudder Root Server.

Before all, you need to setup a server according to the server specifications. You should also configure the network. These topics
are covered in the Architecture chapter.

Ideally, this machine should have Internet access, but this is not a strict requirement.

2.2 Install Rudder Root server on Debian

2.2.1 Add the main, contrib and non-free components

Ensure that the apt package manager is configured to use these three components, by checking that /etc/apt/sources.-
list contains the following lines:

deb http://ftp.fr.debian.org/debian/ squeeze main contrib non-free
deb http://security.debian.org/ squeeze/updates main contrib non-free

Tip
Your mirror may differ, ftp.fr.debian.org is only an example. Also, please adapt the distribution name if needed.
Your Linux distribution may differ too, squeeze could be replaced by lenny.
The Rudder Root server needs a compatible Java Runtime Environment to run.
On Debian Squeeze and Debian Lenny, the available package is Oracle™ Java 6 JRE, namely sun-java-6-jre, which is in the
non-free component.
On Debian Wheezy and above, the available package is OpenJDK 7 JRE, namely openjdk-7-jre.
You can get the Java JRE 6 here : http://www.java.com

2.2.2 Update the system

Prior to beginning the installation of your Rudder Server, we recommend that you update your Debian system with the latest
versions of available packages. Especially for Debian 5 (Lenny), since the release of Debian 6.0 (Squeeze), the signing key of
packages repositories has changed. If you haven’t already done it, you should force the upgrade of the debian-archive-k-
eyring package to fetch the new key:

http://www.java.com

Rudder User Documentation
10 / 52

root@rudder-server:~# aptitude update
root@rudder-server:~# aptitude install debian-archive-keyring
root@rudder-server:~# aptitude update
root@rudder-server:~# aptitude safe-upgrade

2.2.3 Add the Rudder packages repository

To validate the content of the Normation repository, you should import the GPG key used to sign it:

root@rudder-server:~# apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 474A19E8

If your HTTP Keyserver Protocol (11371/tcp) is blocked you can use an alternate command:

root@rudder-server:~# wget --quiet -O- "http://keyserver.ubuntu.com/pks/lookup?op=get& ←↩
search=0x474A19E8" | sudo apt-key add -

Then add the URL of the Normation repository, by typing:

root@rudder-server:~# echo "deb http://www.rudder-project.org/apt-2.3/ $(lsb_release -cs) ←↩
main" > /etc/apt/sources.list.d/rudder.list

Then, update your local package database to retrieve the list of packages available on our repository:

root@rudder-server:~# aptitude update

2.2.4 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

root@rudder-server:~# aptitude install rudder-server-root

Rudder uses the Oracle Java virtual machine. To install it, you must accept its license.

2.3 Install Rudder Root server on SLES

2.3.1 Configure the package manager

Ensure that the zypper package manager is configured, and install the required packages: rsyslog, rsyslog-pgsql and
Oracle Java JRE. rsyslog and rsyslog-pgsql are downloadable along Rudder and Java is available through Oracle’s
website: http://www.java.com.

2.3.2 Update the system

Prior to beginning the installation of your Rudder Server, we recommend that you update your SLES system with the latest
versions of available packages.

root@rudder-server:~# zypper up

http://www.java.com

Rudder User Documentation
11 / 52

2.3.3 Add the Rudder packages repository

Add the URL of the Normation repository, by typing the next command on a SLES 11:

root@rudder-server:~# zypper ar -n "Normation RPM Repositories" http://www.rudder-project. ←↩
org/rpm-2.3/SLES_11_SP1/ Normation

Or this one on a SLES 10:

root@rudder-server:~# zypper sa "http://www.rudder-project.org/rpm-2.3/SLES_10_SP3/" ←↩
Normation

Then, update your local package database to retrieve the list of packages available on our repository:

root@rudder-server:~# zypper up

2.3.4 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

root@rudder-server:~# zypper in rudder-server-root

Tip
If you want to manage the Policy Templates Library with git on a SLES based system, you should dowload the SDK DVD and
install git-core using yast2 or zypper, or get the RPM using another channel.

2.4 Files installed by the application.

/etc System-wide configuration files are stored here: init scripts, configuration for apache, logrotate and rsyslog.

/opt/rudder Non variable application files are stored here.

/opt/rudder/etc Configuration files for Rudder services are stored here.

/var/log/rudder Log files for Rudder services are stored here.

/var/rudder Variable data for Rudder services are stored here.

/var/rudder/cfengine-community Data for CFEngine Community are stored here.

/var/rudder/policy-templates Policy Templates are stored here.

/var/cfengine Data for CFEngine Nova are stored here.

/usr/share/doc/rudder* Documentation about Rudder packages.

Rudder User Documentation
12 / 52

2.5 Initial configuration of your Rudder Root Server

After the installation, you have to configure some system elements, by launching the following initialization script:

/opt/rudder/bin/rudder-init.sh

This script will ask you to fill in the following details:

Hostname The hostname that can be used by the client Nodes to reach the server. It is used to configure the web interface (so
it will be the URL you’ll use to access it), and to configure on the client Node how to reach the root server.

Allowed networks A list of IP networks authorized to connect to the server. We recommend that you specify all the networks
of your infrastructure. The syntax is the standard network/mask notation, for instance 192.168.0.0/24 or 10.0.0.-
0/8. To add several networks, first type the first network, then press the return key - the script will ask if you wish to add
some more networks.

Server IP The IP address of the Rudder Root Server on which the CFEngine daemon should be contacted by all nodes. If your
root server has only one IP address, you should nevertheless type it here.

Demo data Type "yes" if you wish to have the local database filed with demo data. It is usually not recommended if you wish
to add your own Nodes.

Reset initial promises On an existing Rudder Server, you can remove all promises generated by Rudder and replace them by
the standard initialisation promises. The major effect of this option is that every Nodes won’t be able to fetch their promises
until the next regeneration by Rudder.

Tip
In case of typing error, or if you wish to reconfigure these elements, you can execute this script again as many times as you
want.

2.6 Validate the installation

Once all these steps have been completed, use your web browser to go to the URL given on the step described in the section
about initial configuration.

You should see a loading, then a login screen. Only two demo accounts are configured, without any right restriction as of now.

Rudder User Documentation
13 / 52

Chapter 3

Install Rudder Agent

This chapter gives a general presentation of the Rudder Agent, and describes the different configuration steps to deploy the
Rudder agent on the Nodes you wish to manage. Each Operating System has its own set of installation procedures.

The machines managed by Rudder are called Nodes, and can either be physical or virtual. For a machine to become a managed
Node, you have to install the Rudder Agent on it. The Node will afterwards register itself on the server. And finally, the Node
should be acknowledged in the Rudder Server interface to become a managed Node. For a more detailled description of the
workflow, please refer to the Advanced Usage part of this documentation.

3.1 Components

This agent contains the following tools:

1. The community version of CFEngine, a powerful open source configuration management tool.

2. FusionInventory, an inventory software.

3. An initial configuration set for the agent, to bootstrap the Rudder Root Server access.

These components are recognized for their reliability and minimal impact on performances. Our tests showed their memory
consumption is usually under 10 MB of RAM during their execution. So you can safely install them on your servers.

We grouped all these tools in one package, to ease the Rudder Agent installation.

To get the list of supported Operating systems.please refer to the list of supported Operating Systems for the Nodes.

3.2 Install Rudder Agent on Debian or Ubuntu

3.2.1 Add the Rudder packages repository

To validate the content of the Normation repository, you should import the GPG key used to sign it:

root@rudder-server:~# apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 474A19E8

if your HTTP Keyserver Protocol (11371/tcp) is blocked you can use an alternate command:

root@rudder-server:~# wget --quiet -O- "http://keyserver.ubuntu.com/pks/lookup?op=get& ←↩
search=0x474A19E8" | sudo apt-key add -

Then add the URL of the Normation repository, by typing the next command:

http://www.cfengine.com
http://fusioninventory.org/

Rudder User Documentation
14 / 52

root@rudder-server:~# echo "deb http://www.rudder-project.org/apt-2.3/ $(lsb_release -cs) ←↩
main contrib non-free" > /etc/apt/sources.list.d/rudder.list

Then, update your local package database to retrieve the list of packages available on our repository:

root@rudder-server:~# aptitude update

3.2.2 Install your Rudder Agent

To begin the installation, you should simply install the rudder-agent

root@rudder-server:~# aptitude install rudder-agent

Type in the IP address of the Rudder Root Server in the following file

echo *root_server_IP_address* > /var/rudder/cfengine-community/policy_server.dat

Tip
We advise you to use the IP address of the Rudder Root Server. The DNS name of this server can also be accepted if you
have a complete DNS infrastructure matching the IP of the Nodes with their hostnames.

Finally, start the agent:

/etc/init.d/rudder-agent start

3.3 Install Rudder Agent on RedHat or CentOS

Download the package applicable to your version of RedHat/CentOS and to its architecture on

http://www.rudder-project.org/rpm-2.3/RHEL/RPMS/

Install the package:

rpm -Uhv rudder-agent-2.3.0-1.EL.5.x86_64.rpm

Type in the IP address of the Rudder Root Server in the following file

echo *root_server_IP_address* > /var/rudder/cfengine-community/policy_server.dat

Tip
We advise you to use the IP address of the Rudder Root Server. The DNS name of this server can also be accepted if you
have a complete DNS infrastructure matching the IP of the Nodes with their hostnames.

Finally, start the agent:

service rudder-agent start

Rudder User Documentation
15 / 52

3.4 Install Rudder Agent on SuSE

3.4.1 Add the Rudder packages repository

Add the URL of the Normation repository, by typing the next command on a SLES 11 node:

root@rudder-node:~# zypper ar -n "Rudder RPM Repositories" http://www.rudder-project.org/ ←↩
rpm-2.3/SLES_11_SP1/ Rudder

Or this one on a SLES 10 node:

root@rudder-node:~# zypper sa "http://www.rudder-project.org/rpm-2.3/SLES_10_SP3/" Rudder

Then, update your local package database to retrieve the list of packages available on our repository:

root@rudder-node:~# zypper ref

3.4.2 Install your Rudder Agent

To begin the installation, you should simply install the rudder-agent:

root@rudder-server:~# zypper install rudder-agent

Type in the IP address of the Rudder Root Server in the following file

echo *root_server_IP_address* > /var/rudder/cfengine-community/policy_server.dat

Tip
We advise you to use the IP address of the Rudder Root Server. The DNS name of this server can also be accepted if you
have a complete DNS infrastructure matching the IP of the Nodes with their hostnames.

Finally, start the agent:

service rudder-agent start

3.5 Validation

Several minutes after the start of the agent, a new Node should be pending in the Rudder web interface.

You will be able to browse its inventory, and accept it to manage its configuration with Rudder.

You may force the agent execution by issuing the following command :

/var/rudder/cfengine-community/bin/cf-agent -KI

Rudder User Documentation
16 / 52

Chapter 4

Rudder Web Interface

This chapter is a general presentation of the Rudder Web Interface. You will find how to authenticate in the application, a
description of the design of the screen, and some explanations about usage of common user interface items like the search fields
and the reporting screens.

4.1 Authentication

When accessing the Rudder web interface, a login / password is required. The default accounts are:

• Login: jon.doe, password: secret

• Login: alex.bar, password: secret2

You can change the user accounts by following the User management procedure.

4.2 Presentation of Rudder Web Interface

The web interface is organised according to the concepts described earlier. It is divided in three logical parts: Asset Management,
Configuration Management and Administration.

4.2.1 Rudder Home

The home page summarizes the content of the other parts and provides quick links for the most common actions.

Figure 4.1: Home menu

4.2.2 Asset Management

In the Asset Management section, you will find the validation tool for new Nodes, a search engine for validated Nodes, and the
management tool for groups of Nodes.

Rudder User Documentation
17 / 52

Figure 4.2: Asset Management menu

4.2.3 Configuration Management

In the Configuration Management section, you can select the Policy Templates, configure the Policy Instances and manage the
Configuration Rules.

Figure 4.3: Configuration Management menu

4.2.4 Administration

The Administration section provides some general settings: you can setup the available networks for the Policy Server, view the
event logs and manage your plugin collection.

Rudder User Documentation
18 / 52

Figure 4.4: Administration menu

4.3 Units supported as search parameters

Some parameters for the advanced search tool allow using units. For example, in the search criterion for RAM size, you can type
512MB instead of a value in bytes. This paragraph describes supported units by parameter type.

4.3.1 Bytes and multiples

All criteria using a memory size (RAM, hard disk capacity, etc) is by default expected in bytes. If no other unit is specified, all
values will be assumed to be in bytes.

4.3.2 Convenience notation

All memory sizes can be written using spaces or underscores (_) to make the numbers easier to read. Numbers must begin with
a digit. For example, the following numbers are all valid and all worth 1234:

1234
1 234
1_234
1234_

The following number is not valid:

_1234

4.3.3 Supported units

Units used are non binary units, and a mutliplication factor of 1024 is applied between each unit. Units are case insensitive.
Therefore, Mb is identical to mB or mb or MB.

In detail, the following units are supported (provided in lower case, see above):

Rudder User Documentation
19 / 52

Notation Alternate Value
b o bytes (equivalent to not specifying a

unit)
kb ko 1024 bytes
mb mo 1024ˆ2 bytes
gb go 1024ˆ3 bytes
tb to 1024ˆ4 bytes
pb po 1024ˆ5 bytes
eb eo 1024ˆ6 bytes
zb zo 1024ˆ7 bytes
yb yo 1024ˆ8 bytes

Table 4.1: Units supported by Rudder search engine

Rudder User Documentation
20 / 52

Chapter 5

Asset Management

5.1 Asset Inventory

Rudder integrates an asset inventory tool which harvest useful informations about the nodes. These informations are used by
Rudder to handle the nodes, and you can use the inventory informations for Configuration Management purpose: search Nodes,
create Groups of Nodes, determine some configuration management variables.

In the Rudder Web Interface, each time you see a Node name, you can click on it and display the collection of informations
about this Node. The inventory is organized as following: first tab is a summary of administrative informations about the Node;
other tabs are specialized for hardware, network interfaces, and software for every Nodes; tabs for reports and logs are added on
Rudder managed Nodes.

The Node Summary presents administrative informations like the Node Hostname, Operating System, Rudder Client name,
Rudder ID and Date when the inventory was last received. When the Node has been validated, some more informations are
displayed like the Node Name and the Date first accepted in Rudder.

The hardware informations are organized as following: General, File systems, Bios, Controllers, Memory, Port, Processor, Slot,
Sound, Storage, Video.

Network connexions are detailled as following: Name of the interface on the system, IP address, Network Mask, usage of DHCP
or static configuration, MAC address, Type of connexion, Speed of the connexion and Status.

And finally, you get the list of every packaged software present on the system, including version and description.

On Nodes managed by Rudder, the Reports tab displays informations about the status of latest run of Rudder Agent, whereas the
Logs tab displays informations about changes for the Node.

5.2 Accept new Nodes

At the starting point, the Rudder Server does’nt know anything about the Nodes. After the installation of the Rudder Agent,
each Node register itself to the Rudder Server, and sends a first inventory. Every new Node must be manually validated in the
Rudder Web Interface to become part of Rudder Managed Nodes. This task is performed in the Asset Management > Accept
new Nodes section of the application. You can select Nodes waiting for an approval, and determine whether you consider them
as valid or not. Click on each Node name to display the extended inventory. Click on the magnifying glass icon to display the
policies which will be applied after the validation.

Rudder User Documentation
21 / 52

Example 5.1 Accept the new Node debian-node.rudder-project.org

1. Install and configure the Rudder Agent on the new Node debian-node.rudder-project.org

2. Wait a few minutes for the first run of the Rudder Agent.

3. Navigate to Asset Management > Accept new Nodes.

4. Select the new Node in the list.

5. Validate the Node.

6. The Node is now integrated in Rudder, you can search it using the search tools.

5.3 Search Nodes

You can navigate to Asset Management > Search Nodes to display information about the Nodes which have been already
validated, and are managed by Rudder.

5.3.1 Quick Search

The easiest search tool is the Quick search: type in the search field the first letters of the Rudder ID, Reference, or Hostname;
choose the accurate Node in the autocompletion list; validate and look at the Node informations. This search tool can be very
useful to help you create a new search in the Advanced Search.

Example 5.2 Quick search the Node called debian-node
Assuming you have one managed Node called debian-node.rudder-project.org, which ID in Rudder is d06b1c6-
c-f59b-4e5e-8049-d55f769ac33f.

1. Type in the Quick Search field the de or d0.

2. Autocompletion will propose you this Node: debian-node.rudder-project.org--d06b1c6c-f59b-4e5-
e-8049-d55f769ac33f [d06b1c6c-f59b-4e5e-8049-d55f769ac33f].

5.3.2 Advanced Search

In the Advanced Search tool, you create complex research based on Asset Inventory informations. The benefit of the Advanced
Search tool is to save the query and create a Group of Nodes based on the search criteria.

• 1. Select a field

The selection of the field upon which the criteria will apply is a two step process. The list of fields is not displayed unordered and
extensively. Fields have been grouped in the same way they are displayed when you look at information about a Node. First you
choose among these groups: Node, Network Interface, Filesystem, Machine, RAM, Storage, BIOS, Controller, Port, Processor,
Sound Card, Video Card, Software; then you choose among the list of fields concerning this theme.

• 2. Select the matching rule

The matching rule can be selected between following possibilities: Is defined, Is not defined, = or 6= followed by the term you
are searching for presence or absence. Depending on the field, the list of searchable terms is either an free text field, either the
list of available terms.

• 3. Add another rule

Rudder User Documentation
22 / 52

You can select only one term for each matching rule. If you want to create more complex search, then you can add another rule
using the + icon. All rules are using the same operand, either AND or OR. More complex searches mixing AND and OR operands
are not available at the moment.

Example 5.3 Advanced search for Linux Nodes with ssh.
Assuming you want to search every Linux Nodes having ssh installed. You will create this 2 lines request:

1. Operator: AND.

2. First search line: Node, Operating System, =, Linux.

3. Second search line: Software, Name, =, ssh.

5.4 Group of Nodes

You can create Group of Nodes based on search criteria to ease attribution of Rules in Configuration Management. The creation
of groups can be done from the Asset Management > Search Nodes page, or directly from the Groups list in Asset
Management > Groups. A group can be either Dynamic or Static.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Rudder User Documentation
23 / 52

Chapter 6

Configuration Management

6.1 Policy Templates

6.1.1 Concepts

A Policy Template defines a set of operations and configurations to reach the desired behaviour. This includes the initial set-up,
but also a regular check on the parameters, and automatic repairs (when possible).

All the Policy Templates are built with the possibility to change only part of a service configuration: each parameter may be
either active, either set on the "Don’t change" value, that will let the default values or in place. This allows for a progressive
deployment of the configuration management.

Finally, the Policy Templates will generate a set of reports which are sent to the Rudder Root Server, which will let you analyse
the percentage of compliance of your policies, and soon, detailed reports on their application.

6.1.2 Manage the Policy Templates

The Policy Templates shipped with Rudder are presented in a library that you can reorganize in Administration > Policy Template
Library Management. The library is organized in two parts: the available Policy Templates, and the selection made by the user.

Reference Policy Template Library This is an organized list of every available Policy Templates. This list can’t be modified:
every changes made by an user will be applied to the User Policy Template Library.

User Policy Template Library This is an organized list of the Policy Templates selected and modified by the user. By default
this list is the same as the Reference Policy Template Library. Policy Templates can be disabled or deleted, and then
activated again with a simple drag and drop. Categories can be reorganised according to the desired taxonomy. A Policy
Template can appear only once in the Library.

Tip
The current version of Rudder has only an handful of Policy Templates. We are aware that it considerably limits the use of the
application, but we choose to hold back other Policy Templates that did not, from our point of view, have the sufficient quality.
In the future, there will be some upgrades including more Policy Templates.

Warning
The creation of new Policy Templates is not covered by the Web interface. This is an advanced task which is currently
not covered by this guide.

Rudder User Documentation
24 / 52

6.1.3 Available Policy Templates

6.1.3.1 Application management

Apache 2 HTTP server This Policy Template will configure the Apache HTTP server and ensure it is running. It will ensure
the "apache2" package is installed (via the appropriate packaging tool for each OS), ensure the service is running and start
it if not and ensure the service is configured to run on initial system startup. Configuration will create a rudder vhost file.

APT package manager configuration Configure the apt-get and aptitude tools on GNU/Linux Debian and Ubuntu, especially
the source repositories.

OpenVPN client This Policy Template will configure the OpenVPN client service and ensure it is running. It will ensure the
"openvpn" package is installed (via the appropriate packaging tool for each OS), ensure the service is running and start it
if not and ensure the service is configured to run on initial system startup. Configuration will create a rudder.conf file. As
of this version, only the PSK peer identification method is supported, please use the "Download File" Policy Template to
distribute the secret key.

Package management for Debian / Ubuntu / APT based systems Install, update or delete packages, automatically and con-
sistently on GNU/Linux Debian and Ubuntu.

Package management for RHEL / CentOS / RPM based systems Install, update or delete packages, automatically and con-
sistently on GNU/Linux CentOS and RedHat.

6.1.3.2 Distributing files

Copy a file Copy a file on the machine

Distribute ssh keys Distribute ssh keys on servers

Download a file Download a file for a standard URL (HTTP/FTP), and set permissions on the downloaded file.

6.1.3.3 File state configuration

Set the permissions of files Set the permissions of files

6.1.3.4 System settings: Miscellaneous

Time settings Set up the time zone, the NTP server, and the frequency of time synchronisation to the hardware clock. Also
ensures that the NTP service is installed and started.

6.1.3.5 System settings: Networking

Hosts settings Configure the contents of the hosts filed on any operating system (Linux and Windows).

IPv4 routing management Control IPv4 routing on any system (Linux and Windows), with four possible actions: add, delete
(changes will be made), check presence or check absence (a warning may be returned, but no changes will be made) for a
given route.

Name resolution Set up the IP address of the DNS server name, and the default search domain.

NFS Server Configure a NFS server

Rudder User Documentation
25 / 52

6.1.3.6 System settings: Process

Process Management Enforce defined parameters on system processes

6.1.3.7 System settings: Remote access

OpenSSH server Install and set up the SSH service on Linux nodes. Many parameters are available.

6.1.3.8 System settings: User management

Group management This Policy Template manages the target host(s) groups. It will ensure that the defined groups are present
on the system.

Sudo utility configuration This Policy Template configures the sudo utility. It will ensure that the defined rights for given
users and groups are correctly defined.

User management Control users on any system (Linux and Windows), including passwords, with four possible actions: add,
delete (changes will be made), check presence or check absence (a warning may be returned, but no changes will be made)
for a given user.

6.2 Policy Instances

Once you have selected and organized your Policy Templates, you can create your configurations in the Configuration Manage-
ment > Policy Instances section.

Policy Instance This is an instance of a Policy Template, which allows to set values for the parameters of the latter. Each Policy
Instance can have an unique name. A Policy Instance should be completed with a short and a long description, and a
collection of parameters for the variables defined by the Policy Template.

The screen is divided in three parts:

• on the left, your list of Policy Templates and Policy Instances,

• on the right the description of the selected Policy Template or Policy Instance.

• at the bottom, the configuration items of the selected Policy Instance.

Click on the name of a Policy Template or to see its description.

Click on the name of a Policy Instance to see the Policy Summary containing the description of the Policy Template its derived
from, and the configuration items of the Policy Instance.

Example 6.1 Create a Policy Instance for Name resolution
Use the Policy Template Name resolution to create a new Policy Instance called Google DNS Servers, and shortly described
as Use Google DNS Server. Check in the options Set nameservers and Set DNS search suffix. Set the value of the variable DNS
resolver to 8.8.8.8 and of Domain search suffix according to your organization, like rudder-project.org.

Manual escaping of value
The values you are inserting within the Policy Instance fields need to be manually escaped most of the time, or else you
will have deployment error. Every quote (") need to be prefixed by a backslash (\"), and backslash should be prefixed
by another backslash (\\). Indeed, CFEngine will consider a non-prefixed quote as the end of value, and it considers
\\ to mean \
However, there are no other escape character (\n will not be considered as a new line, etc).

Rudder User Documentation
26 / 52

6.3 Configuration rules

Configuration Rule It is the application of a policy to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

When a Configuration Rule is created or modified, the promises for the target nodes are generated. Rudder computes all the
promises each nodes must have, and makes them available for the nodes. This process can take up to several minutes, depending
on the number of managed nodes and the Policy Server configuration. During this time, the "Regenerate now" button is replaced
by a moving bar and a message stating "Generating configuration rules". You can also press the "Regenerate now" button on
the top of the interface if you feel the generated promises should be modified (for instance, if you changed the configuration of
Rudder) === Compliance

A Policy Instance contains one or multiple components. Each component generates one ore multiple reports, based on the number
of keys in this component. For example, for a Sudoers Policy Instance, each user is a key. These states are available in reports:

Success The system is already in the desired state. No change is needed. Conformity is gained.

Repaired The system was not in the desired state. Rudder applied some change and repaired what was not correct. Now the
system is in the desired state. Conformity is gained.

Error The system is not in the desired state. Rudder couldn’t repair the system.

Applying When a Policy Instance is applied, Rudder waits during 10 minutes for a report. During this period, the Policy
Instance is said Applying.

No answer The system didn’t sent any reports. Rudder waited for 10 minutes and no report was received.

A Policy Instance has gained conformity on a Node is every reports for each components, for each key, are in Success state. This
is the only condition.

Based on these facts, the compliance of a Configuration Rule is calculated like this :

Number of Nodes for which conformity is reached for every Policy Instance of the Configuration Rule / Total number of Nodes
on which the Configuration Rule has been applied

Figure 6.1: Reports

Rudder User Documentation
27 / 52

Chapter 7

Administration

This chapter covers basic administration task of Rudder services like configuring some parameters of the Rudder policy server,
reading the services log, and starting, stopping or restarting Rudder services. === Basic administration of Rudder services

This chapter covers basic administration task of Rudder services like configuring some parameters of the Rudder policy server,
reading the services logg, and start, stop or restart Rudder services.

7.1 Policy Server Management

The Administartion > Policy Server Management section sum-up information about Rudder policy server and its parameters.

7.1.1 Configure allowed networks

Here you can configure the networks from which nodes are allowed to connect to Rudder policy server to get their updated
configuration rules.

You can add as many network as you want, the expected format is: networkip/mask, for example 42.42.0.0/16.

7.2 View Event Logs

The Administration > View Event Logs section allows to see last events logged in Rudder.

7.3 Plugin Management

Rudder is an extensible software. The Administration > Plugin Management section sum-up information about loaded plugins
and their configuration.

7.4 Restart the agent of the node

To restart the Rudder Agent, use following command on a node:

/etc/init.d/rudder-agent restart

Tip
This command can take more than one minute to restart the CFEngine daemon. This is not a bug, but an internal protection
system of CFEngine.

Rudder User Documentation
28 / 52

7.5 Restart the root rudder service

7.5.1 Restart everything

You can restart all components of the Rudder Root Server at once:

/etc/init.d/rudder-server-root restart

7.5.2 Restart only one component

Here is the list of the components of the root server with a brief description of their role, and the command to restart them:

CFEngine server Distribute the CFEngine configuration to the nodes.

/etc/init.d/cfengine-community restart

Web server application Execute the web interface and the server that handles the new inventories.

/etc/init.d/jetty restart

Web server front-end Handle the connection to the Web interface, the received inventories and the sharing of the UUID
Rudder Root Server.

/etc/init.d/apache2 restart

LDAP server Store the inventories and the Node configurations.

/etc/init.d/slapd restart

SQL server Store the received reports from the nodes.

/etc/init.d/postgresql* restart

7.6 Policy Template upgrade

New versions of the Policy Template library are made available as packages, named rudder-policy-templates, for the 2.3 version
of Rudder. Many bug fixes and new Policy Templates are added all the time. To benefit from these, we recommend you upgrade
your Policy Template library from time to time.

Updates are available from rudder-project.org, as standard OS package downloads. Please note that nightly builds are also
available, and may provide the most up to date set of Policy Templates. See http://www.rudder-project.org/foswiki/Download/
for full details.

When you upgrade the Rudder Policy Templates packages to a new version, a new version of the Policy Template library is
installed to /opt/rudder/share/policy-templates.

The Policy Template library used by Rudder is managed using a GIT tree, located in /var/rudder/configuration-repository/policy-
templates. Therefore, you can not simply copy the files from /opt/rudder/share/policy-templates to Rudder’s storage, you also
have to follow this simple procedure:

http://www.rudder-project.org/foswiki/Download/

Rudder User Documentation
29 / 52

Tip
Please make sure that any changes you make are on a new version of a Policy Template, or you are likely to have your changes
replaced by the reference library! Of course, GIT will keep history if your modifications are already commited but this would be
an annoyance.

• Jump to the Rudder Policy Template tree

cd /var/rudder/configuration-repository/policy-templates

• Copy the reference Policy Template library to your local tree

cp -a /opt/rudder/share/policy-templates/* .

• Update the GIT repository to match the new tree state

git commit -am "Upgraded the Policy Template library (by $USER)"

• Finally, return to the web interface and go the Configuration Management menu, then click on the Policy Templates menu item
on the left. In the screen that appears, click the "Reload" button next to "You can load the last available version of the policy
template library" at the top of the screen. === Usecases

This chapter gives a few examples for using Rudder. We have no doubt that you’ll have your own ideas, that we’re impatient to
hear about. . .

7.6.1 Dynamic groups by operating system

Create dynamic groups for each operating system you administer, so that you can apply specific policies to each type of OS.
When new nodes are added to Rudder, these policies will automatically be enforced upon them.

7.6.2 Library of preventive policies

Why not create policies for emergency situations in advance? You can then put your IT infrastructure in "panic" mode in just a
few clicks.

For example, using the provided Policy Templates, you could create a Name resolution policy to use your own internal DNS
servers for normal situations, and a second, alternative policy, to use Google’s public DNS servers, in case your internal DNS
servers are no longer available.

7.6.3 Standardizing configurations

You certainly have your own best practices (let’s call them good habits) for setting up your SSH servers.

But is that configuration the same on all your servers? Enforce the settings your really want using an OpenSSH server policy and
apply it to all your Linux servers. SSH servers can then be stopped or reconfigured manually many times, Rudder will always
restore your preferred settings and restart the SSH server in less than 5 minutes. == Advanced usage

This chapter describe advanced usage of Rudder.

7.7 User management

Change the users authorized to connect to the application

Rudder User Documentation
30 / 52

7.7.1 Configuration of the users using a XML file

7.7.1.1 Generality and uses of clear text password

The credentials of a user are defined in the XML file /opt/rudder/etc/rudder-users.xml. This file expects the
following format:

<authentication>
<user name="jon.doe" password="secret"/>
<user name="alex.bar" password="secret2"/>

</authentication>

The name and password attributes are mandatory (non empty) for the user tags. Only these attributes are recognized.

Every modification of this file should be followed by a restart of the Rudder web application to be taken into account:

/etc/init.d/jetty restart

7.7.1.2 Use of hashed passwords

The authentication tag may have the hash attribute. If defined, the password will be stored as hashes.

The algorithm used to create the hash (and verify it during authentication) depend on the value of the hash attribute. The possible
values, the corresponding algorithm and the Linux shell command need to obtain the hash of the "secret" password for this
algorithm are listed here:

Value Algorithm Linux command to hash the
password

"md5" MD5 read mypass; echo -n
$mypass | md5sum

"sha" or "sha1" SHA one read mypass; echo -n
$mypass | shasum

"sha256" or "sha-256" SHA, 256 bytes read mypass; echo -n
$mypass | sha256sum

"sha512" or "sha-512" SHA, 512 bytes read mypass; echo -n
$mypass | sha512sum

Table 7.1: Hashed passwords algorithms list

When using the suggested commands to hash a password, you must enter the command, then type your password, and hit return.
The hash will then be displayed in your terminal. This avoids storing the password in your shell history.

Here is an example of authentication file with hashed password:

<authentication hash="sha">
<user name="jon.doe" password="e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4"/>
<user name="alex.bar" password="c636e8e238fd7af97e2e500f8c6f0f4c0bedafb0"/>

</authentication>

7.7.2 Going further

Rudder aims at integrating with your IT system transparently, so it can’t force its own authentication system.

To meet this need, Rudder relies on the modular authentication system Spring Security that allows to easily integrate with
databases, LDAP directory, or an entreprise SSO like CAS, OpenID or SPNEGO. The documentation for this integration is not
yet available, but don’t hesitate to reach us on this topic.

Rudder User Documentation
31 / 52

7.8 Password management

You might want to change the default passwords used in Rudder’s managed daemons for evident security reasons.

7.8.1 Configuration of the postgres database password

You will have to adjust the postgres database and the rudder-web.properties file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the Postgres database user

su - postgres -c "psql -q -c \"ALTER USER blah WITH PASSWORD ’$PASS’\""

• Insert the password in the rudder-web.properties file

sed -i "s%^rudder.jdbc.password.*$%rudder.jdbc.password=$PASS%" /opt/rudder/etc/rudder-web. ←↩
properties

7.8.2 Configuration of the OpenLDAP manager password

You will have to adjust the OpenLDAP and the rudder-web.properties file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the password in the slapd configuration

HASHPASS=‘/opt/rudder/sbin/slappasswd -s $PASS‘
sed -i "s%^rootpw.*$%rootpw $HASHPASS%" /opt/rudder/etc/openldap/slapd.conf

• Update the password in the rudder-web.properties file

sed -i "s%^ldap.authpw.*$%ldap.authpw=$PASS%" /opt/rudder/etc/rudder-web.properties

Rudder User Documentation
32 / 52

7.8.3 Configuration of the WebDAV access password

This time, the procedure is a bit more tricky, as you will have to update the Policy Template library as well as a configuration file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the password in the apache htaccess file

Tip
On some systems, especially SuSE ones, htpasswd is called as "htpasswd2"

htpasswd -b /opt/rudder/etc/htpasswd-webdav rudder $PASS

• Update the password in Rudder’s system Policy Templates

cd /var/rudder/configuration-repository/policy-templates/system/common/1.0/
sed -i "s%^.*davpw.*$% \"davpw\" string => \"$PASS\"\;%" site.st
git commit -m "Updated the rudder WebDAV access password" site.st

• Update the Rudder Policy Instances by either reloading them in the web interface (in the "Configuration Management/Policy
Templates" tab) or restarting jetty (NOT recommended) === Reinitialize policies for a Node

To reinitialize the policies for a Node, delete the local copy of the Applied Policies fetched from the Rudder Server, and create a
new local copy of the initial promises.

root@node:~# rm -rf /var/rudder/cfengine-community/inputs/*
root@node:~# cp -a /opt/rudder/share/initial-promises/* /var/rudder/cfengine-community/ ←↩

inputs/

At next run of the Rudder Agent (it runs every five minuts), the initial promises will be used.

Caution
Use this procedure with caution: the Applied Policies of a Node should never get broken, unless some major change
has occured on the Rudder infrastructure, like a full reinstallation of the Rudder Server.

7.9 Optimize Postgres

The default (out-of-the-box) configuration of Postgres is really not compliant for large (or normal) machines. It uses a really
small amount of memory

The location of the file is:

1. /etc/postgresql/8.x/main/postgresql.conf

2. /var/lib/pgsql/data/postgresql.conf (on a SuSE system)

Rudder User Documentation
33 / 52

7.9.1 Suggested values on a large node

7.9.1.1 Amount of System V shared memory

A reasonable starting value for shared_buffers is 1/4 of the memory in your system:

1. shared_buffers = 1GB

Note
Note : you may need to set the proper amount on the system

$ sysctl -w kernel.shmmax=1073741824

Ref http://www.postgresql.org/docs/8.4/interactive/kernel-resources.html#SYSVIPC

7.9.1.2 Memory for complex operations

Complex query:

1. work_mem = 24MB

2. max_stack_depth = 4MB

Complex maintenance (index, vacuum):

1. maintenance_work_mem = 240MB

7.9.1.3 Write ahead log

Size of the write ahead log:

1. wal_buffers = 4MB

7.9.1.4 Query planner

Gives hint to the query planner about the size of disk cache

Setting effective_cache_size to 1/2 of total memory would be a normal conservative setting:

1. effective_cache_size = 1024MB

7.9.2 Suggested values on a not so large node

1. shared_buffers = 128MB

2. work_mem = 8MB

3. max_stack_depth = 3MB

4. maintenance_work_mem = 64MB

5. wal_buffers = 1MB

6. effective_cache_size = 128MB === Rudder Agent workflow

http://www.postgresql.org/docs/8.4/interactive/kernel-resources.html#SYSVIPC

Rudder User Documentation
34 / 52

In this chapter, we will have a more detailled view of the Rudder Agent workflow. What files and processes are created or
modified at the installation of the Rudder Agent? What is happening when a new Node is created? What are the recurrent tasks
performed by the Rudder Agent? How does the Rudder Server handle the requests coming from the Rudder Agent? The Rudder
Agent workflow schema summarizes the process that will be described in the next pages.

Figure 7.1: Rudder Agent workflow

Rudder User Documentation
35 / 52

7.9.3 Installation of the Rudder Agent

7.9.3.1 Static files

At installation of the Rudder Agent, files and directories are created in following places:

/etc Scripts to integrate Rudder Agent in the system (init, cron).

/opt/rudder/share/initial-promises Initialization promises for the Rudder Agent. These promises are used until
the Node has been validated in Rudder. They are kept available at this place afterwards.

/opt/rudder/lib/perl5 The FusionInventory Inventory tool and its Perl dependencies.

/opt/rudder/bin/run-inventory Wrapper script to launch the inventory.

/opt/rudder/sbin Binaries for CFEngine Community.

/var/rudder/cfengine-community This is the working directory for CFEngine Community.

7.9.3.2 Generated files

At the end of installation, the CFEngine Community working directory is populated for first use, and unique identifiers for the
Node are generated.

/var/rudder/cfengine-community/bin/ CFEngine Community binaries are copied there.

/var/rudder/cfengine-community/inputs Contains the actual working CFEngine Community promises. Initial
promises are copied here at installation. After validation of the Node, Applied Policies, which are the CFEngine promises
generated by Rudder for this particular Node, will be stored here.

/var/rudder/cfengine-community/ppkeys An unique SSL key generated for the Node at installation time.

/opt/rudder/etc/uuid.hive An unique identifier for the Node is generated into this file.

7.9.3.3 Services

After all of these files are in place, the CFEngine Community daemons are launched:

cf-execd This CFEngine Community daemon is launching the CFEngine Community Agent cf-agent every 5 minutes.

cf-serverd This CFEngine Community daemon is listening on the network for a forced launch of the CFEngine Community
Agent coming from the Rudder Server’s Big Red Button.

7.9.3.4 Configuration

At this point, you should configure the Rudder Agent to actually enable the contact with the server. Type in the IP address of the
Rudder Root Server in the following file:

echo *root_server_IP_address* > /var/rudder/cfengine-community/policy_server.dat

7.9.4 Tasks executed by Rudder Agent on the Node

Let’s consider the Rudder Agent is installed and configured on the new Node.

The Rudder Agent is regularly launched and performs following tasks sequencially, in this order:

Rudder User Documentation
36 / 52

7.9.4.1 Request data from Rudder Server

The first action of Rudder Agent is to fetch the tools directory from Rudder Server. This directory is located at /opt/ru-
dder/share/tools on the Rudder Server and at /var/rudder/tools on the Node. If this directory is already present,
only changes will be updated.

The agent then try to fetch new Applied Policies from Rudder Server. Only requests from valid Nodes will be accepted. At first
run and until the Node has been validated in Rudder, this step fails.

7.9.4.2 Launch processes

Ensure that the CFEngine community daemons cf-execd and cf-serverd are running. Try to start these daemons if they
are not already started.

Daily between 5:00 and 5:05, relaunch the CFEngine Community daemons cf-execd and cf-serverd.

Add a line in /etc/crontab to launch cf-execd if it’s not running.

Ensure again that the CFEngine community daemons cf-execd and cf-serverd are running. Try to start these daemons if
they are not already started.

7.9.4.3 Identify Rudder Root Server

Ensure the curl package is installed. Install the package if it’s not present.

Get the identifier of the Rudder Root Server, necessary to generate reports. The URL of the identifier is http://Rudder_root_server/uuid

7.9.4.4 Inventory

If no inventory has been sent since 8 hours, or if a forced inventory has been requested (class force_inventory is defined),
do and send an inventory to the server.

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI -Dforce_inventory=true

No reports are generated until the Node has been validated in Rudder Server.

7.9.4.5 Syslog

After validation of the Node, the system log service of the Node is configured to send reports regularly to the server. Supported
system log providers are: syslogd, rsyslogd and syslog-ng.

7.9.4.6 Apply Policy Instances

Apply other policies and write reports locally.

7.9.5 Rudder Agent interactive

You can force the Rudder Agent to run from the console and observe what happens.

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

Rudder User Documentation
37 / 52

Error: the name of the Rudder Root Server can’t be resolved
If the Rudder Root Server name is not resolvable, the Rudder Agent will issue this error:

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

Unable to lookup hostname (rudder-root) or cfengine service: Name or service not ←↩
known

To fix it, either you set up the agent to use the IP adress of the Rudder root server instead of its Domain name, either
you set up accurately the name resolution of your Rudder Root Server, in your DNS server or in the hosts file.
The Rudder Root Server name is defined in this file

root@node:~# echo *IP_of_root_server* > /var/rudder/cfengine-community/policy_server ←↩
.dat

Error: the CFEngine service is not responding on the Rudder Root Server
If the CFEngine is stopped on the Rudder Root Server you will get this error:

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI
!! Error connecting to server (timeout)
!!! System error for connect: "Operation now in progress"
!! No server is responding on this port
Unable to establish connection with rudder-root

Restart the CFEngine service:

user@rudder-root:~$ sudo /var/rudder/cfengine-community/bin/cf-serverd

7.9.6 Processing new inventories on the server

7.9.6.1 Verify the inventory has been received by the Rudder Root Server

There is some delay between the time when the first inventory of the Node is sent, and the time when the Node appears in the
New Nodes of the web interface. For the brave and impatient, you can check if the inventory was sent by listing incoming Nodes
on the server:

ls /var/rudder/inventories/incoming/

7.9.6.2 Process incoming inventories

On the next run of the CFEngine agent on Rudder Root Server, the new inventory will be detected and sent to the Inventory
Endpoint. The inventory will be then moved in the directory of received inventories. The the Inventory Endpoint do its job and
the new Node appears in the interface.

You can force the execution of CFEngine agent on the console:

user@rudder-root:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

7.9.6.3 Validate new Nodes

User interaction is required to validate new Nodes.

Rudder User Documentation
38 / 52

7.9.6.4 Prepare policies for the Node

Policies are not shared between the Nodes for obvious security and confidentiality reasons. Each Node has its own set of policies.
Policies are generated for Nodes according in the following states:

1. Node is new;

2. Inventory has changed;

3. Policy Template has changed;

4. Policy Instance has changed;

5. Group of Node has changed;

6. Configuration Rule has changed;

7. Regeneration was forced by the user.

Rudder User Documentation
39 / 52

Figure 7.2: Generate policy workflow

7.10 Configuration files

/etc/default/rudder-agent

#==
Configuration sample for Cfengine Community init script
#==

Cfengine Community directory and files
CFENGINE_COMMUNITY_PATH="/opt/rudder"
CFENGINE_COMMUNITY_VAR_PATH="/var/rudder/cfengine-community"

Rudder User Documentation
40 / 52

CFENGINE_COMMUNITY_RUN[CFEXECD]="1"
CFENGINE_COMMUNITY_RUN[CFSERVERD]="1"
CFENGINE_COMMUNITY_RUN[CFMONITORD]="0"
CFENGINE_COMMUNITY_BIN[CFEXECD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-execd"
CFENGINE_COMMUNITY_BIN[CFSERVERD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-serverd"
CFENGINE_COMMUNITY_BIN[CFMONITORD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-monitord"
CFENGINE_COMMUNITY_PARAMS[CFEXECD]=""
CFENGINE_COMMUNITY_PARAMS[CFSERVERD]=""
CFENGINE_COMMUNITY_PARAMS[CFMONITORD]=""
CFENGINE_COMMUNITY_PID_FILE[CFEXECD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-execd.pid"
CFENGINE_COMMUNITY_PID_FILE[CFSERVERD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-serverd.pid"
CFENGINE_COMMUNITY_PID_FILE[CFMONITORD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-monitord.pid"

Other
TIMEOUT="60" # Max time to start/stop processes
SYSLOG_FACILITY="local6"
PS_COMMAND="ps -efww" # This ensures full width for ps output but doesn’t work on Solaris ←↩

- use "ps -ef"

/opt/rudder/etc/htpasswd-webdav

rudder:vHBLbrOyfEWFg

/opt/rudder/etc/inventory-web.properties

##
Default configuration file for the application.
You can define the location of this file by
setting "inventoryweb.configFile" JVM property,
for example:
java -Dinventoryweb.configFile=/opt/rudder/etc/inventory-web.conf
##

#
LDAP related configuration
#

LDAP directory connection information
ldap.host=localhost
ldap.port=389
ldap.authdn=cn=Manager,cn=rudder-configuration
ldap.authpw=secret

inventories information
ldap.inventories.software.basedn=ou=Inventories,cn=rudder-configuration
ldap.inventories.accepted.basedn=ou=Accepted Inventories,ou=Inventories,cn=rudder- ←↩

configuration
ldap.inventories.pending.basedn=ou=Pending Inventories,ou=Inventories,cn=rudder- ←↩

configuration

where to store LDIF inventory versions
history.inventories.rootdir=/var/rudder/inventories/historical

where to store debug information about LDAP modification requests
ldif.tracelog.rootdir=/var/rudder/inventories/debug

/opt/rudder/etc/logback.xml

<configuration>
<!--
This is the default logging configuration file. It will be used if you
didn’t specify the "logback.configurationFile" JVM option.

Rudder User Documentation
41 / 52

For example, to use a loggin configuration file in "/etc/rudder":
java ... -Dlogback.configurationFile=/etc/rudder/logback.xml

Full information about the file format is available on the project
web site: http://logback.qos.ch/manual/configuration.html#syntax
-->

<!--
Appender configuration - where&how to write logs in SLF4J speaking.
===
Our default configuration : log on stdout appender so that our logs
are managed by the container log system (and so, if Tomcat/Jetty/etc
logs are stored in files and rotated, so are our log information).

Log format is:
- date/time/thread of the log on 30 chars (fixed)
- log level on 5 char (fixed)
- name of the logger (and so the class) on 36 chars, with

package name folding
- log message follows
- limit exception trace to 30 calls

You should not have to modify that.
-->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

<Pattern>%-30(%d{HH:mm:ss.SSS} [%thread]) %-5level %logger{36} - %msg%n%xEx{30}</ ←↩
Pattern>

</encoder>
</appender>

<!--
Manage the global log level of the application.
===

That level will be used for all logs that are not
more precisely defined below (i.e for whom there is
no <logger name="...." level="..."/> defined)

Available log levels are:
trace < debug < info < warn < error < off

"off" completely shut down logging for the given logger

Do not modify the appender part if you don’t know what you
are doing.

-->

<root level="info">
<appender-ref ref="STDOUT" />

</root>

<!--
Debug LDAP write operations
===========================

This logger allow to trace LDAP writes operation and
to output them in LDIF file (the output directory path
is configured in the main configuration file)
The trace is done only if level is set to "trace"
WARNING: setting the level to trace may have major
performance issue, as A LOT of LDIF files will have
to be written.

Rudder User Documentation
42 / 52

You should activate that log only for debugging purpose.
-->

<logger name="trace.ldif.in.file" level="off" />

<!-- == -->
<!-- YOU SHOULD NOT HAVE TO CHANGE THINGS BELOW THAT LINE -->
<!-- == -->

<!--
Display AJAX information of the Web interface
===
Whatever the root logger level is, you are likely
to not wanting these information.
Set the level to debug if you are really interested
in AJAX-related debug messages.

-->
<logger name="comet_trace" level="info" />

<!--
Spring Framework log level
==========================
We really don’t want to see SpringFramework debug info,
whatever the root logger level is - it’s an internal
component only.

-->
<logger name="org.springframework" level="warn" />

<!--
We don’t need to have a timing information for each
HTTP request.
If you want to have these information, set the log
level for that logger to (at least) "info"
-->

<logger name="net.liftweb.util.TimeHelpers" level="warn" />

</configuration>

/opt/rudder/etc/openldap/slapd.conf

#
See slapd.conf(5) for details on configuration options.
This file should NOT be world readable.
#
include /opt/rudder/etc/openldap/schema/core.schema
include /opt/rudder/etc/openldap/schema/cosine.schema
include /opt/rudder/etc/openldap/schema/nis.schema
include /opt/rudder/etc/openldap/schema/dyngroup.schema
include /opt/rudder/etc/openldap/schema/inventory.schema
include /opt/rudder/etc/openldap/schema/rudder.schema

loglevel none stats

Define global ACLs to disable default read access.

Do not enable referrals until AFTER you have a working directory
service AND an understanding of referrals.
#referral ldap://root.openldap.org

pidfile /var/rudder/run/slapd.pid
argsfile /var/rudder/run/slapd.args

Rudder User Documentation
43 / 52

Load dynamic modules for backends and overlays:
modulepath /opt/rudder/libexec/openldap/
moduleload back_hdb.la
moduleload back_monitor.la
moduleload dynlist.la

Sample security restrictions
Require integrity protection (prevent hijacking)
Require 112-bit (3DES or better) encryption for updates
Require 63-bit encryption for simple bind
security ssf=1 update_ssf=112 simple_bind=64

Sample access control policy:
Root DSE: allow anyone to read it
Subschema (sub)entry DSE: allow anyone to read it
Other DSEs:
Allow self write access
Allow authenticated users read access
Allow anonymous users to authenticate
Directives needed to implement policy:
access to dn.base="" by * read
access to dn.base="cn=Subschema" by * read
access to *
by self write
by users read
by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!

##
Global overlays (available on all databases)
##
overlay dynlist
dynlist-attrset dynGroup memberURL

###
BDB database definitions
###

database hdb
suffix "cn=rudder-configuration"
rootdn "cn=Manager,cn=rudder-configuration"
Cleartext passwords, especially for the rootdn, should
be avoid. See slappasswd(8) and slapd.conf(5) for details.
Use of strong authentication encouraged.
rootpw secret
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd and slap tools.
Mode 700 recommended.
directory /var/rudder/ldap/openldap-data
Checkpoint database every 128k written or every 5 minutes
checkpoint 0 1
Indices to maintain
index objectClass eq
index confirmed eq
index uuid,machineUuid,nodeId,machine,hostedVm,container,node,software eq
index mountPoint,softwareVersion,cn eq

Rudder User Documentation
44 / 52

index member eq

database monitor

/opt/rudder/etc/postgresql/reportsSchema.sql

-- SQL schema for the reports data

-- set the report to warnings
set client_min_messages=’warning’;

-- Create the sequences
Create SEQUENCE confSerialId START 1;

Create SEQUENCE confVersionId START 1;

-- Create the table for the configuration reports information
create table configurationReportsInfo (

serialId integer PRIMARY KEY DEFAULT nextval(’confSerialId’),
versionId integer NOT NULL,
configurationRuleId text NOT NULL CHECK (configurationRuleId <> ’’),
serial integer NOT NULL,
policyInstanceId text NOT NULL CHECK (policyInstanceId <> ’’),
component text NOT NULL CHECK (component <> ’’),
cardinality integer NOT NULL,
componentsValues text NOT NULL, -- this is the serialisation of the expected values
beginDate timestamp with time zone NOT NULL,
endDate timestamp with time zone

);

create index configuration_versionId on configurationReportsInfo (versionId);
create index configuration_serialId on configurationReportsInfo (configurationRuleId, ←↩

serial);

create table configurationServerList (
versionId integer NOT NULL ,
serverUuid varchar(50) NOT NULL CHECK (serverUuid <> ’’),
primary key (versionId, serverUuid)

);

create index configurationServerList_versionId on configurationServerList (versionId);

-- create the table for the reports sent

create sequence serial START 101;

CREATE TABLE RudderSysEvents (
id integer PRIMARY KEY default nextval(’serial’),
executionDate timestamp with time zone NOT NULL,
nodeId text NOT NULL CHECK (nodeId <> ’’),
policyInstanceId text NOT NULL CHECK (policyInstanceId <> ’’),
configurationRuleId text NOT NULL CHECK (configurationRuleId <> ’’),
serial integer NOT NULL,
component text NOT NULL CHECK (component <> ’’),
keyValue text,
executionTimeStamp timestamp with time zone NOT NULL,
eventType varchar(64),
policy text,
msg text
);

Rudder User Documentation
45 / 52

create index nodeid_idx on RudderSysEvents (nodeId);
create index date_idx on RudderSysEvents (executionDate);
create index policyInstanceId_idx on RudderSysEvents (policyInstanceId);
create index configurationRuleId_idx on RudderSysEvents (configurationRuleId);
create index configurationRuleId_node_idx on RudderSysEvents (configurationRuleId, nodeId);
create index configurationRuleId_serialed_idx on RudderSysEvents (configurationRuleId, ←↩

serial);
create index composite_idx on RudderSysEvents (configurationRuleId, policyInstanceId, ←↩

serial, executionTimeStamp);

-- Log event part

CREATE SEQUENCE eventLogIdSeq START 1;

CREATE TABLE EventLog (
id integer PRIMARY KEY DEFAULT nextval(’eventLogIdSeq’),
creationDate timestamp with time zone NOT NULL DEFAULT ’now’,
severity integer,
causeId integer,
principal varchar(64),
eventType varchar(64),
data xml

);

create index eventType_idx on EventLog (eventType);
create index causeId_idx on EventLog (causeId);

create sequence GroupsId START 101;

CREATE TABLE Groups (
id integer PRIMARY KEY default nextval(’GroupsId’),
groupId text NOT NULL CHECK (groupId <> ’’),
groupName text,
groupDescription text,
nodeCount int,
startTime timestamp with time zone default now(),
endTime timestamp with time zone
);

create index groups_id_start on Groups (groupId, startTime);
create index groups_end on Groups (endTime);

create sequence PolicyInstancesId START 101;

CREATE TABLE PolicyInstances (
id integer PRIMARY KEY default nextval(’PolicyInstancesId’),
policyInstanceId text NOT NULL CHECK (policyInstanceId <> ’’),
policyInstanceName text,
policyInstanceDescription text,
priority integer NOT NULL,
policyPackageName text,

Rudder User Documentation
46 / 52

policyPackageVersion text,
policyPackageDescription text,
startTime timestamp with time zone NOT NULL,
endTime timestamp with time zone
);

create index pi_id_start on PolicyInstances (policyInstanceId, startTime);
create index pi_end on PolicyInstances (endTime);

create sequence ConfigurationRulesId START 101;

CREATE TABLE ConfigurationRules (
id integer PRIMARY KEY default nextval(’ConfigurationRulesId’),
configurationRuleId text NOT NULL CHECK (configurationRuleId <> ’’),
serial integer NOT NULL,
name text,
shortdescription text,
longdescription text,
isActivated boolean,
startTime timestamp with time zone NOT NULL,
endTime timestamp with time zone
);

CREATE TABLE ConfigurationRulesGroups (
CrId integer, -- really the id of the table ConfigurationRules
groupId text NOT NULL CHECK (groupId <> ’’),
PRIMARY KEY(CrId, groupId)
);

CREATE TABLE ConfigurationRulesPolicyInstance (
CrId integer, -- really the id of the table ConfigurationRules
policyInstanceId text NOT NULL CHECK (policyInstanceId <> ’’),
PRIMARY KEY(CrId, policyInstanceId)
);

create index cr_id_start on ConfigurationRules (configurationRuleId, startTime);
create index cr_end on ConfigurationRules (endTime);

/opt/rudder/etc/reportsInfo.xml

<ReportsInfoStore>
</ReportsInfoStore>

/opt/rudder/etc/rudder-users.xml

<!--
The "authentication" tag can have a "hash" argument, with these allowed values:
"md5", "sha1", "sha256", "sha-256", "sha512", "sha-512"

For example: <authentication hash="sha">

To hash passwords for this format, run these commands:
"md5" read mypass; echo -n $mypass | md5sum
"sha" or "sha1" read mypass; echo -n $mypass | shasum
"sha256" or "sha-256" read mypass; echo -n $mypass | sha256sum
"sha512" or "sha-512" read mypass; echo -n $mypass | sha512sum

After changing this file, the rudder webapp must be restarted to take changes
into account: /etc/init.d/jetty restart

Rudder User Documentation
47 / 52

-->

<!-- example with hash -->
<!-- <authentication hash="sha"> -->
<authentication>

<user name="jon.doe" password="secret"/>
<user name="alex.bar" password="secret2"/>
<!-- exemple of bad lines -->
<!-- <user name="" password="secret2"/>-->
<!-- <user name="name" password=""/>-->

</authentication>

/opt/rudder/etc/rudder-web.properties

##
Default configuration file for the application.
You can define the location of the file by
setting "rudder.configFile" JVM property,
for example:
java -Drudder.configFile=/opt/rudder/etc/rudder-web.conf
##

##
Application information
##
#define that property if you are behind a proxy
#or anything that make the URL served by the
#servlet container be different than the public one
#note: if defined, must not end with /
#let blank to use default value
base.url=http://rudder-debian/rudder

##
LDAP properties
##

LDAP directory connection information
ldap.host=localhost
ldap.port=389
ldap.authdn=cn=manager,cn=rudder-configuration
ldap.authpw=secret

#inventories information
ldap.inventories.software.basedn=ou=Inventories, cn=rudder-configuration
ldap.inventories.accepted.basedn=ou=Accepted Inventories, ou=Inventories, cn=rudder- ←↩

configuration
ldap.inventories.pending.basedn=ou=Pending Inventories, ou=Inventories, cn=rudder- ←↩

configuration

#Base DN for Rudder Data
ldap.rudder.base=ou=Rudder, cn=rudder-configuration

#Base DN (the ou=Node is already given by the DIT)
ldap.node.base=cn=rudder-configuration

directory where LDIF trace of LDAP modify request are
stored when loglevel is ’trace’
ldif.tracelog.rootdir=/var/rudder/inventories/debug

##

Rudder User Documentation
48 / 52

Other Rudder Configuration properties
##

#
directory used as root directory to store LDIF dump
of historised inventories
history.inventories.rootdir=/var/rudder/inventories/historical

##
Upload directory
##
directory where new uploaded files are stored
upload.root.directory=/var/rudder/files/

##
Emergency stop
##
path to the script/binary that allows emergency orchestrator stop
bin.emergency.stop=/opt/rudder/bin/cfe-red-button.sh

##
Promise writer directory configuration
##
rudder.dir.config=/opt/rudder/etc/
rudder.dir.policyPackages=/opt/rudder/share/policy-templates
rudder.dir.licensesFolder=/opt/rudder/etc/licenses
rudder.dir.policies=/var/rudder/
rudder.dir.backup=/var/rudder/backup/
rudder.dir.dependencies=/var/rudder/tools/
rudder.dir.sharing=/var/rudder/files/
rudder.dir.lock=/var/rudder/lock/
rudder.endpoint.cmdb=http://localhost:8080/endpoint/upload/

Port used by the community edition
rudder.community.port=5309

rudder.jdbc.driver=org.postgresql.Driver
rudder.jdbc.url=jdbc:postgresql://localhost:5432/rudder
rudder.jdbc.username=rudder
rudder.jdbc.password=Normation

#
Destination directory for files distributed
with the copyFile policy
#
policy.copyfile.destination.dir=/some/default/destination/directory/

#
Command line to check the promises generated
#
rudder.community.checkpromises.command=/var/rudder/cfengine-community/bin/cf-promises
rudder.nova.checkpromises.command=/bin/true

#
Interval of time between two dynamic group update batch
Expect an int (amount of minutes)
#
rudder.batch.dyngroup.updateInterval=5

Rudder User Documentation
49 / 52

#
Interval of time (in seconds) between two checks
for a policy template library update (a commit)
300s = 5minutes
#
rudder.batch.ptlib.updateInterval=300

#
Configure the refs path to use for the git repository for
the Policy Template Reference Library.
The default is to use "refs/heads/master" (the local master
branche).
You have to use the full ref path.
rudder.ptlib.git.refs.path=refs/heads/master

Rudder User Documentation
50 / 52

Chapter 8

Glossary

Applied Policy This is the result of the conversion of a Policy Instance into a set of CFEngine Promises for a particular Node.

"Big red button" A button, on the right top side of every page of Rudder web interface, to command the emergency stop of
the agents. This stop will be implicitly done in less than 10 minutes, or can be done immediately if the port 5309 TCP from
the Rudder Root Server (or each relay server) is open to each nodes. This feature is detailed in the user documentation.

cf-execd This CFEngine Community daemon is launching the CFEngine Community Agent cf-agent every 5 minutes.

cf-serverd This CFEngine Community daemon is listening on the network for a forced launch of the CFEngine Community
Agent coming from the Rudder Server’s Big Red Button.

CFEngine Nova Managing Windows machines requires the commercial version of CFEngine, called Nova. It needs to open
the port 5308 TCP from the Node to the Rudder Root Server.

CFEngine server Distribute the CFEngine configuration to the nodes.

CFEngine CFEngine is a configuration management software. CFEngine comes from a contraction of “ConFiguration En-
gine”.

Configuration Rule It is the application of a policy to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

LDAP server Store the inventories and the Node configurations.

Policy Instance This is an instance of a Policy Template, which allows to set values for the parameters of the latter. Each Policy
Instance can have an unique name. A Policy Instance should be completed with a short and a long description, and a
collection of parameters for the variables defined by the Policy Template.

Policy Template This is a configuration skeleton, adapted to a function or a particular service (eg DNS resolver configuration).
This skeleton includes the configuration logic for this function or service, and can be set according to a list of variables (in
the same example: IP addresses of DNS servers, the default search box, . . .)

Port 514, TCP Syslog port, used to centralize reports.

Port 5308, TCP Nova communication port, used by the commercial version of CFEngine, which is required to manage Win-
dows nodes.

Port 5309, TCP CFEngine communication port, used to communicate the policies to the rudder nodes.

Port 80, TCP, for nodes HTTP communication port, used to send inventory and fetch the id of the Rudder Server.

Port 80, TCP, for users HTTP communication port, used by the users to access to the web interface.

Rudder User Documentation
51 / 52

Reference Policy Template Library This is an organized list of every available Policy Templates. This list can’t be modified:
every changes made by an user will be applied to the User Policy Template Library.

Rudder Node A Node is client computer managed by Rudder. To be managed, a Node must first be accepted as an authorized
node.

Rudder Relay Server Relay servers are not available in the current version. In a future version, these optional servers will let
you adapt your Rudder architecture to your existing network topology, by acting as a proxy for flows exchanged between
managed nodes and the root server.

Rudder Root Server This is the core of the Rudder infrastructure. This server must be a dedicated machine (either virtual of
physical), and contains the main application components: the web interface, databases, configuration data, logs. . .

Rudder Rudder is a Drift Assesment software. Rudder associates Asset Management and Configuration Management. Rudder
is a Free Software developped by Normation.

SQL server Store the received reports from the nodes.

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

User Policy Template Library This is an organized list of the Policy Templates selected and modified by the user. By default
this list is the same as the Reference Policy Template Library. Policy Templates can be disabled or deleted, and then
activated again with a simple drag and drop. Categories can be reorganised according to the desired taxonomy. A Policy
Template can appear only once in the Library.

Web server application Execute the web interface and the server that handles the new inventories.

Web server front-end Handle the connection to the Web interface, the received inventories and the sharing of the UUID
Rudder Root Server.

Rudder User Documentation
52 / 52

License

Copyright © 2011 Normation SAS

Rudder User Documentation by Normation SAS is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License.

Permissions beyond the scope of this license may be available at Normation SAS.

External contributions:

I like buttons 3a icon set for admonition blocks by MazeNL77 is free for commercial usage.

http://normation.com
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://normation.com
http://mazenl77.deviantart.com/art/I-like-buttons-3a-113122067
http://mazenl77.deviantart.com/

	Introduction
	Rudder functions
	Asset management concepts
	New Nodes
	Search Nodes
	Groups of Nodes

	Configuration management concepts
	Rudder components
	Specifications for Rudder Nodes
	Specifications for Rudder Root Server
	Hardware specifications
	Supported Operating Systems
	Packages
	Software dependencies and third party components

	Configure the network
	Mandatory flows
	Optional flows
	DNS - Name resolution

	Install Rudder Server
	Prepare Rudder Root Server Installation
	Install Rudder Root server on Debian
	Add the main, contrib and non-free components
	Update the system
	Add the Rudder packages repository
	Install your Rudder Root Server

	Install Rudder Root server on SLES
	Configure the package manager
	Update the system
	Add the Rudder packages repository
	Install your Rudder Root Server

	Files installed by the application.
	Initial configuration of your Rudder Root Server
	Validate the installation

	Install Rudder Agent
	Components
	Install Rudder Agent on Debian or Ubuntu
	Add the Rudder packages repository
	Install your Rudder Agent

	Install Rudder Agent on RedHat or CentOS
	Install Rudder Agent on SuSE
	Add the Rudder packages repository
	Install your Rudder Agent

	Validation

	Rudder Web Interface
	Authentication
	Presentation of Rudder Web Interface
	Rudder Home
	Asset Management
	Configuration Management
	Administration

	Units supported as search parameters
	Bytes and multiples
	Convenience notation
	Supported units

	Asset Management
	Asset Inventory
	Accept new Nodes
	Search Nodes
	Quick Search
	Advanced Search

	Group of Nodes

	Configuration Management
	Policy Templates
	Concepts
	Manage the Policy Templates
	Available Policy Templates
	Application management
	Distributing files
	File state configuration
	System settings: Miscellaneous
	System settings: Networking
	System settings: Process
	System settings: Remote access
	System settings: User management

	Policy Instances
	Configuration rules

	Administration
	Policy Server Management
	Configure allowed networks

	View Event Logs
	Plugin Management
	Restart the agent of the node
	Restart the root rudder service
	Restart everything
	Restart only one component

	Policy Template upgrade
	Dynamic groups by operating system
	Library of preventive policies
	Standardizing configurations

	User management
	Configuration of the users using a XML file
	Generality and uses of clear text password
	Use of hashed passwords

	Going further

	Password management
	Configuration of the postgres database password
	Configuration of the OpenLDAP manager password
	Configuration of the WebDAV access password

	Optimize Postgres
	Suggested values on a large node
	Amount of System V shared memory
	Memory for complex operations
	Write ahead log
	Query planner

	Suggested values on a not so large node
	Installation of the Rudder Agent
	Static files
	Generated files
	Services
	Configuration

	Tasks executed by Rudder Agent on the Node
	Request data from Rudder Server
	Launch processes
	Identify Rudder Root Server
	Inventory
	Syslog
	Apply Policy Instances

	Rudder Agent interactive
	Processing new inventories on the server
	Verify the inventory has been received by the Rudder Root Server
	Process incoming inventories
	Validate new Nodes
	Prepare policies for the Node

	Configuration files

	Glossary

