
Rudder 2.11 - User Manual i

Rudder 2.11 - User Manual

Rudder 2.11 - User Manual ii

Copyright © 2011-2016 Normation SAS

Rudder User Documentation by Normation is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
Permissions beyond the scope of this license may be available at normation.com.

Rudder 2.11 - User Manual iii

COLLABORATORS

TITLE :

Rudder 2.11 - User Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY Jonathan Clarke,
Nicolas Charles,

Fabrice
Flore-Thebault,
Matthieu Cerda,
Nicolas Perron,
Arthur Anglade,

Vincent Membré, and
François Armand

May 2014

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.11 May 2014 N

Rudder 2.11 - User Manual iv

Contents

1 Online version 1

2 Introduction 2

2.1 Concepts . 2

2.1.1 Rudder functions . 2

2.1.2 Asset management concepts . 2

2.1.2.1 New Nodes . 2

2.1.2.2 Search Nodes . 2

2.1.2.3 Groups of Nodes . 3

2.1.3 Configuration management concepts . 3

2.2 Rudder components . 4

3 Installation 5

3.1 Requirements . 5

3.1.1 Networking . 5

3.1.1.1 Mandatory flows . 5

3.1.1.2 Optional flows . 5

3.1.1.3 DNS - Name resolution . 5

3.1.2 Supported Operating Systems . 6

3.1.2.1 For Rudder Nodes . 6

3.1.2.2 For Rudder Root Server . 7

3.1.3 Hardware specifications and sizing for Rudder Root Server . 7

3.1.3.1 Memory . 7

3.1.3.2 Disk . 7

3.2 Install Rudder Server . 8

3.2.1 Install Rudder Root server on Debian or Ubuntu . 8

3.2.1.1 Add the Rudder packages repository . 8

3.2.1.2 Java on Debian/Ubuntu . 8

3.2.1.3 Install your Rudder Root Server . 9

3.2.1.4 Incompatibility between Rudder server on Ubuntu and Rudder agents using syslog (RHEL/-
CentOS 5) . 9

Rudder 2.11 - User Manual v

3.2.2 Install Rudder Root server on SLES . 9

3.2.2.1 Configure the package manager . 9

3.2.2.2 Add the Rudder packages repository . 10

3.2.2.3 Install your Rudder Root Server . 10

3.2.3 Install Rudder Root server on RHEL-like systems . 10

3.2.3.1 Java on RHEL/CentOS . 10

3.2.3.2 Add the Rudder packages repository . 11

3.2.3.3 Install your Rudder Root Server . 11

3.2.4 Initial configuration of your Rudder Root Server . 12

3.2.5 Validate the installation . 12

3.3 Install Rudder Agent . 13

3.3.1 Install Rudder Agent on Debian or Ubuntu . 13

3.3.2 Install Rudder Agent on RHEL or CentOS . 14

3.3.3 Install Rudder Agent on SLES . 15

3.3.4 Configure and validate . 15

3.3.4.1 Configure Rudder Agent . 15

3.3.4.2 Start Rudder Agent: . 16

3.3.4.3 Validate new Node . 16

4 Upgrade 17

4.1 Caution cases . 17

4.1.1 Known bugs . 17

4.2 On Debian or Ubuntu . 18

4.3 On RHEL or CentOS . 18

4.4 On SLES . 19

4.5 Technique upgrade . 19

5 Rudder Web Interface 21

5.1 Authentication . 21

5.2 Presentation of Rudder Web Interface . 21

5.2.1 Rudder Home . 21

5.2.2 Node Management . 22

5.2.3 Configuration Management . 23

5.2.4 Administration . 23

5.3 Units supported as search parameters . 24

5.3.1 Bytes and multiples . 24

5.3.2 Convenience notation . 24

5.3.3 Supported units . 25

Rudder 2.11 - User Manual vi

6 Node Management 26

6.1 Node Inventory . 26

6.2 Accept new Nodes . 26

6.3 Search Nodes . 27

6.3.1 Quick Search . 27

6.3.2 Advanced Search . 27

6.4 Group of Nodes . 28

7 Configuration Management 29

7.1 Techniques . 29

7.1.1 Concepts . 29

7.1.2 Manage the Techniques . 29

7.1.3 Available Techniques . 30

7.1.3.1 Application management . 30

7.1.3.2 Distributing files . 30

7.1.3.3 File state configuration . 30

7.1.3.4 System settings: Miscellaneous . 30

7.1.3.5 System settings: Networking . 30

7.1.3.6 System settings: Process . 31

7.1.3.7 System settings: Remote access . 31

7.1.3.8 System settings: User management . 31

7.2 Directives . 31

7.3 Rules . 32

7.4 Variables . 32

7.4.1 User defined parameters . 32

7.4.2 System variables . 32

7.5 Compliance . 33

7.6 Validation workflow in Rudder . 34

7.6.1 What is a Change request ? . 34

7.6.1.1 Change request status . 34

7.6.1.2 Change request management page . 35

7.6.1.3 Change request detail page . 35

7.6.2 How to create a Change request ? . 37

7.6.3 How to validate a Change request ? . 38

7.6.3.1 Roles . 38

7.6.3.2 Self Validations . 39

7.6.4 Change request and conflicts . 39

7.6.5 Notifications: . 39

7.6.5.1 Pending change requests . 39

7.6.5.2 Change already proposed on Rule/Directive/Group . 40

Rudder 2.11 - User Manual vii

8 Manage your IT 41

8.1 How to . 41

8.1.1 Enforce a line is present in a file only once . 41

8.2 Security considerations . 42

8.2.1 Data confidentiality . 42

8.2.1.1 Private data . 42

8.2.1.2 Common data . 43

9 Administration 44

9.1 Archives . 44

9.1.1 Archive usecases . 44

9.1.1.1 Changes testing . 44

9.1.1.2 Changes qualification . 44

9.1.2 Concepts . 44

9.1.3 Archiving . 45

9.1.4 Importing configuration . 45

9.1.5 Deploy a preconfigured instance . 46

9.2 Event Logs . 46

9.3 Policy Server . 46

9.3.1 Configure allowed networks . 46

9.3.2 Clear caches . 46

9.3.3 Reload dynamic groups . 46

9.4 Plugins . 47

9.4.1 Install a plugin . 47

9.5 Basic administration of Rudder services . 47

9.5.1 Restart the agent of the node . 47

9.5.2 Restart the root rudder service . 47

9.5.2.1 Restart everything . 47

9.5.2.2 Restart only one component . 47

9.6 Password upgrade . 48

9.7 User management . 48

9.7.1 Configuration of the users using a XML file . 48

9.7.1.1 Generality . 48

9.7.1.2 Passwords . 49

9.7.2 Configuring an LDAP authentication provider for Rudder . 49

9.7.2.1 LDAP is only for authentication . 49

9.7.2.2 Enable LDAP authentication . 50

9.7.3 Authorization management . 50

9.7.3.1 Pre-defined roles . 51

Rudder 2.11 - User Manual viii

9.7.3.2 Custom roles . 51

9.7.4 Going further . 51

9.8 Monitoring . 51

9.8.1 Monitoring Rudder itself . 52

9.8.1.1 Monitoring a Node . 52

9.8.1.2 Monitoring a Server . 52

9.8.2 Monitoring your configuration management . 52

9.9 Use Rudder inventory in other tools . 53

9.9.1 Export to a spreadsheet . 53

9.9.2 Use the inventory in Rundeck . 53

9.9.3 Use the inventory in Ansible . 53

10 Usecases 54

10.1 Dynamic groups by operating system . 54

10.2 Library of preventive policies . 54

10.3 Standardizing configurations . 54

11 Advanced usage 55

11.1 Node management . 55

11.1.1 Reinitialize policies for a Node . 55

11.1.2 Change the agent run schedule . 55

11.1.3 Installation of the Rudder Agent . 55

11.1.3.1 Static files . 55

11.1.3.2 Generated files . 56

11.1.3.3 Services . 56

11.1.3.4 Configuration . 56

11.1.4 Rudder Agent interactive . 56

11.1.5 Processing new inventories on the server . 57

11.1.5.1 Verify the inventory has been received by the Rudder Root Server 57

11.1.5.2 Process incoming inventories . 57

11.1.5.3 Validate new Nodes . 57

11.1.5.4 Prepare policies for the Node . 58

11.1.6 Agent execution frequency on nodes . 59

11.1.6.1 Checking configuration (CFEngine) . 59

11.1.6.2 Inventory (FusionInventory) . 60

11.2 Password management . 60

11.2.1 Configuration of the postgres database password . 60

11.2.2 Configuration of the OpenLDAP manager password . 60

11.2.3 Configuration of the WebDAV access password . 61

Rudder 2.11 - User Manual ix

11.3 Policy generation . 61

11.3.1 Regenerate now button . 61

11.4 Technique creation . 61

11.4.1 Recommended solution: Technique Editor . 62

11.4.1.1 Using the Technique Editor . 62

11.4.1.2 Logs . 62

11.4.2 Understanding how Technique Editor works . 62

11.4.2.1 Directory layout . 62

11.4.2.2 Technique Editor integration with Rudder . 63

11.4.2.3 Hooks . 63

11.4.3 Create Technique manually . 64

11.4.3.1 Prerequisite . 64

11.4.3.2 Define your objective . 64

11.4.3.3 Initialize your new Technique . 64

11.4.3.4 Define variables . 65

11.4.3.5 First test in the Rudder interface . 65

11.4.3.6 Implement the behavior . 65

11.4.3.7 Read in the variables from Rudder . 65

11.4.3.8 Add reporting . 65

11.5 REST API . 66

11.5.1 Default setup . 66

11.5.1.1 Rudder Authentication . 66

11.5.1.2 Apache access rules . 66

11.5.1.3 User for REST actions . 66

11.5.2 Status . 66

11.5.3 Promises regeneration . 67

11.5.4 Dynamic groups regeneration . 67

11.5.5 Technique library reload . 67

11.5.6 Archives manipulation . 67

11.5.6.1 Archiving: . 67

11.5.6.2 Listing: . 67

11.5.6.3 Restoring a given archive: . 67

11.5.6.4 Restoring the latest available archive (from a previously archived action, and so from a Git tag): 68

11.5.6.5 Restoring the latest available commit (use Git HEAD): . 68

11.5.6.6 Downloading a ZIP archive . 68

11.6 Relay servers . 68

11.6.1 Installation procedure - On the relay . 69

11.6.1.1 Install Rudder agent . 69

11.6.1.2 Install the required dependencies and enable required modules 69

Rudder 2.11 - User Manual x

11.6.1.3 Create the necessary directory and adjust the permissions . 69

11.6.1.4 Please create the appropriate file for your OS, and copy the following content in it 70

11.6.2 Installation procedure - On the root server . 71

11.6.2.1 Set the node as a Rudder relay . 71

11.6.3 Result . 71

11.6.4 Adding nodes to a relay server . 72

11.7 Multiserver Rudder . 72

11.7.1 Preliminary steps . 72

11.7.2 Install rudder-relay-top . 73

11.7.3 Install rudder-db . 73

11.7.4 Install rudder-ldap . 73

11.7.5 Install rudder-web . 73

11.8 Server migration . 74

11.8.1 What files you need . 74

11.8.2 Handle configuration files . 74

11.8.2.1 Copy /var/rudder/configuration-repository . 74

11.8.2.2 Use Archive feature of Rudder . 74

11.8.3 Handle CFEngine keys . 74

11.8.3.1 Keep your CFEngine keys . 74

11.8.3.2 Change CFEngine keys . 75

11.8.4 On your nodes . 75

11.9 Mirroring Rudder repositories . 75

12 Handbook 76

12.1 Database maintenance . 76

12.1.1 Automatic PostgreSQL table maintenance . 76

12.1.2 PostgreSQL database vacuum . 77

12.1.3 LDAP database reindexing . 77

12.2 Migration, backups and restores . 77

12.2.1 Backup . 77

12.2.2 Restore . 78

12.2.3 Migration . 79

12.3 Performance tuning . 79

12.3.1 Reports retention . 79

12.3.2 Apache HTTPd . 79

12.3.3 Jetty . 79

12.3.4 Java "Out Of Memory Error" . 79

12.3.5 Configure RAM allocated to Jetty . 80

12.3.6 Optimize PostgreSQL server . 80

Rudder 2.11 - User Manual xi

12.3.6.1 Suggested values on an high end server . 80

12.3.6.2 Suggested values on a low end server . 81

12.3.7 CFEngine . 81

12.3.8 Rsyslog . 82

12.3.8.1 Maximum number of file descriptors . 82

12.3.8.2 Network backlog . 83

12.3.8.3 Conntrack table . 83

13 Troubleshooting and common issues 84

13.1 Some reports are in "No Answer" . 84

13.1.1 If you get no reports at all for the Node . 84

13.1.2 If you get incomplete reporting for the Node . 84

13.2 Communication issues between agent and server . 85

13.2.1 DNS issues . 85

13.2.2 Inventory issues . 85

13.3 Technique editing . 85

13.4 Database is using too much space . 85

14 Reference 87

14.1 Rudder Server data workflow . 87

14.2 Rudder Agent workflow . 90

14.2.1 Request data from Rudder Server . 92

14.2.2 Launch processes . 92

14.2.3 Identify Rudder Root Server . 92

14.2.4 Inventory . 92

14.2.5 Syslog . 92

14.2.6 Apply Directives . 92

14.3 Configuration files for a Node . 92

14.4 Packages organization . 93

14.4.1 Packages . 93

14.4.2 Software dependencies and third party components . 95

14.5 Configuration files for Rudder Server . 96

14.6 Generic methods . 102

14.6.1 Command . 103

14.6.1.1 command_execution . 103

14.6.1.2 command_execution_result . 103

14.6.2 Directory . 103

14.6.2.1 directory_check_exists . 103

14.6.2.2 directory_create . 104

Rudder 2.11 - User Manual xii

14.6.3 File . 104

14.6.3.1 file_check_FIFO_pipe . 104

14.6.3.2 file_check_block_device . 104

14.6.3.3 file_check_character_device . 105

14.6.3.4 file_check_exists . 105

14.6.3.5 file_check_hardlink . 105

14.6.3.6 file_check_regular . 106

14.6.3.7 file_check_socket . 106

14.6.3.8 file_check_symlink . 106

14.6.3.9 file_check_symlinkto . 107

14.6.3.10 file_copy_from_local_source . 107

14.6.3.11 file_copy_from_local_source_recursion . 107

14.6.3.12 file_copy_from_remote_source . 108

14.6.3.13 file_copy_from_remote_source_recursion . 108

14.6.3.14 file_create . 109

14.6.3.15 file_create_symlink . 109

14.6.3.16 file_create_symlink_enforce . 109

14.6.3.17 file_create_symlink_force . 109

14.6.3.18 file_download . 110

14.6.3.19 file_enforce_content . 110

14.6.3.20 file_ensure_block_in_section . 110

14.6.3.21 file_ensure_block_present . 111

14.6.3.22 file_ensure_key_value . 111

14.6.3.23 file_ensure_key_value_present_in_ini_section . 111

14.6.3.24 file_ensure_keys_values . 112

14.6.3.25 file_ensure_line_present_in_ini_section . 112

14.6.3.26 file_ensure_line_present_in_xml_tag . 112

14.6.3.27 file_ensure_lines_absent . 113

14.6.3.28 file_ensure_lines_present . 113

14.6.3.29 file_from_template . 113

14.6.3.30 file_from_template_mustache . 113

14.6.3.31 file_from_template_type . 114

14.6.3.32 file_remove . 114

14.6.3.33 file_replace_lines . 114

14.6.3.34 file_template_expand . 115

14.6.4 Group . 115

14.6.4.1 group_absent . 115

14.6.4.2 group_present . 115

14.6.5 Http . 116

Rudder 2.11 - User Manual xiii

14.6.5.1 http_request_check_status_headers . 116

14.6.5.2 http_request_content_headers . 116

14.6.6 Logger . 116

14.6.6.1 logger_rudder . 116

14.6.7 Package . 117

14.6.7.1 package_check_installed . 117

14.6.7.2 package_install . 117

14.6.7.3 package_install_version . 117

14.6.7.4 package_install_version_cmp . 118

14.6.7.5 package_install_version_cmp_update . 118

14.6.7.6 package_remove . 119

14.6.7.7 package_verify . 119

14.6.7.8 package_verify_version . 119

14.6.8 Permissions . 120

14.6.8.1 permissions . 120

14.6.8.2 permissions_dirs . 120

14.6.8.3 permissions_dirs_recurse . 120

14.6.8.4 permissions_recurse . 121

14.6.8.5 permissions_type_recursion . 121

14.6.9 Schedule . 121

14.6.9.1 schedule_simple . 121

14.6.9.2 schedule_simple_catchup . 122

14.6.9.3 schedule_simple_nodups . 123

14.6.9.4 schedule_simple_stateless . 123

14.6.10 Service . 124

14.6.10.1 service_action . 124

14.6.10.2 service_check_running . 124

14.6.10.3 service_check_running_ps . 124

14.6.10.4 service_check_started_at_boot . 125

14.6.10.5 service_ensure_running . 125

14.6.10.6 service_ensure_running_path . 125

14.6.10.7 service_ensure_started_at_boot . 125

14.6.10.8 service_ensure_stopped . 126

14.6.10.9 service_reload . 126

14.6.10.10service_restart . 126

14.6.10.11service_restart_if . 126

14.6.10.12service_start . 127

14.6.10.13service_stop . 127

14.6.11 User . 127

Rudder 2.11 - User Manual xiv

14.6.11.1 user_absent . 127

14.6.11.2 user_create . 127

14.6.12 Variable . 128

14.6.12.1 variable_dict . 128

14.6.12.2 variable_dict_from_file . 128

14.6.12.3 variable_iterator . 129

14.6.12.4 variable_iterator_from_file . 129

14.6.12.5 variable_string . 130

14.6.12.6 variable_string_from_file . 130

15 Appendix: Glossary 131

Rudder 2.11 - User Manual xv

List of Figures

2.1 Concepts diagram . 4

5.1 Rudder Homepage . 22

5.2 Node Management welcome screen . 23

5.3 Configuration Management welcome screen . 23

5.4 Administration welcome screen . 24

7.1 Reports . 33

11.1 Generate policy workflow . 59

11.2 Rudder relay node . 71

14.1 Rudder data workflow . 89

14.2 Rudder Agent workflow . 91

14.3 Rudder packages and their dependencies . 94

Rudder 2.11 - User Manual xvi

List of Tables

5.1 Units supported by Rudder search engine . 25

9.1 Hashed passwords algorithms list . 49

Rudder 2.11 - User Manual 1 / 133

Chapter 1

Online version

You can also read the Rudder User Documentation on the Web.

http://rudder-project.org

Rudder 2.11 - User Manual 2 / 133

Chapter 2

Introduction

This chapter presents the main concepts and the architecture of Rudder: what are the server types and their interactions.

Reading this chapter will help you to learn the terms used, and to prepare the deployment of a Rudder installation.

2.1 Concepts

2.1.1 Rudder functions

Rudder addresses two main functions:

1. Configuration management;

2. Asset management;

The configuration management function relies on the asset management function. The purpose of the asset management function
is to identify Nodes and some of their characteristics which can be useful to perform configuration management. The purpose of
configuration management is to apply rules on Nodes. A rule can include the installation of a tool, the configuration of a service,
the execution of a daemon, etc. To apply rules on Nodes, Rudder uses the information produced by the asset management
function to identify these Nodes and evaluate some specific information about them.

2.1.2 Asset management concepts

Each Node is running a Rudder Agent, which is sending regularly an inventory to the Rudder Server.

2.1.2.1 New Nodes

Following the first inventory, Nodes are placed in a transit zone. You can then view the detail of their inventory, and accept the
final Node in the Rudder database if desired. You may also reject the Node, if it is not a machine you would like to manage with
Rudder.

2.1.2.2 Search Nodes

An advanced search engine allows you to identify the required Nodes (by name, IP address, OS, versions, etc.)

Rudder 2.11 - User Manual 3 / 133

2.1.2.3 Groups of Nodes

You will have to create sets of Nodes, called groups. These groups are derived from search results, and can either be static or a
dynamic :

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

2.1.3 Configuration management concepts

We adopted the following terms to describe the configurations in Rudder:

Technique This is a configuration skeleton, adapted to a function or a particular service (e.g. DNS resolver configuration). This
skeleton includes the configuration logic for this function or service, and can be set according to a list of variables (in the
same example: IP addresses of DNS servers, the default search box, . . .)

Directive This is an instance of a Technique, which allows to set values for the parameters of the latter. Each Directive can have
a unique name. A Directive should be completed with a short and a long description, and a collection of parameters for the
variables defined by the Technique.

Rule It is the application of one or more directives to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

Applied Policy This is the result of the conversion of a Policy Instance into a set of CFEngine Promises for a particular Node.

As illustrated in this summary diagram, the rules are linking the functions of inventory management and configuration manage-
ment.

Rudder 2.11 - User Manual 4 / 133

Figure 2.1: Concepts diagram

2.2 Rudder components

The Rudder infrastructure uses three types of machines:

Rudder Node A Node is client computer managed by Rudder. To be managed, a Node must first be accepted as an authorized
node.

Rudder Root Server This is the core of the Rudder infrastructure. This server must be a dedicated machine (either virtual of
physical), and contains the main application components: the web interface, databases, configuration data, logs. . .

Rudder Relay Server Relay servers are an optional component in a Rudder architecture. They can act as a proxy for all network
communications between Rudder agents and a Rudder server. This enables them to be installed in a remote datacenter, or
inside a restricted network zone, to limit the network flows required to use Rudder.

Rudder 2.11 - User Manual 5 / 133

Chapter 3

Installation

3.1 Requirements

3.1.1 Networking

3.1.1.1 Mandatory flows

The following flows from the Nodes to the Rudder Root Server have to be allowed:

Port 5309, TCP CFEngine communication port, used to communicate the policies to the rudder nodes.

Port 80, TCP, for nodes HTTP communication port, used to send inventory and fetch the id of the Rudder Server.

Port 514, TCP Syslog port, used to centralize reports.

Open the following flow from the clients desktop to the Rudder Root Server:

Port 443, TCP, for users HTTPS communication port, used by the users to access to the web interface.

3.1.1.2 Optional flows

These flows are used to add features to Rudder:

CFEngine Nova Managing Windows machines requires the commercial version of CFEngine, called Nova. It needs to open
the port 5308 TCP from the Node to the Rudder Root Server.

3.1.1.3 DNS - Name resolution

Currently, Rudder relies on the Node declared hostnames to identify them. So it is required that each Node hostname can be
resolved to its IP address that will be used to contact the Rudder Server. We are aware that it is far from being ideal in most cases
(no DNS environment, private sub-networks, NAT, etc. . .), and we are currently working on an alternative solution.

If you do not have the wished name resolution, we advise that you should fill the IP address and hostname of the /etc/hosts
file of the Rudder Root Server.

Similarly, each Rudder Node must be able to resolve the Rudder Root Server hostname given in the step described in Initial
configuration of your Rudder Root Server.

Rudder 2.11 - User Manual 6 / 133

3.1.2 Supported Operating Systems

3.1.2.1 For Rudder Nodes

The following operating systems are supported for Rudder Nodes and packages are available for these platforms:

• Debian GNU/Linux 5 (Lenny)

• Debian GNU/Linux 6 (Squeeze)

• Debian GNU/Linux 7 (Wheezy)

• Microsoft Windows Server 2000

• Microsoft Windows Server 2003

• Microsoft Windows Server 2008

• Red Hat Enterprise Linux (RHEL) / CentOS 3

• Red Hat Enterprise Linux (RHEL) / CentOS 5

• Red Hat Enterprise Linux (RHEL) / CentOS 6

• SuSE Linux Enterprise Server (SLES) 10 SP3

• SuSE Linux Enterprise Server (SLES) 11 SP1

• Ubuntu 10.04 LTS (lucid)

• Ubuntu 12.04 LTS (precise)

• Ubuntu 12.10 (quantal)

• IBM AIX 5.3

• IBM AIX 6.1

• IBM AIX 7.1

Windows and AIX Nodes

• On Windows, installing Rudder requires the commercial version of CFEngine (named CFEngine Enterprise)

• For IBM AIX, pre-built RPM packages are distributed by Normation only

Hence, as a starting point, we suggest that you only use Linux machines. Once you are accustomed to Rudder, contact
Normation to obtain a demo version for these platforms.

Unsupported Operating Systems
It is possible to use Rudder on other platforms than the ones listed here. However, we haven’t tested the application
on them, and can’t currently supply any packages for them. Moreover, the Techniques are likely to fail. If you wish to
try Rudder on other systems, please contact us.

Rudder 2.11 - User Manual 7 / 133

3.1.2.2 For Rudder Root Server

The following operating systems are supported as a Root server:

• Debian GNU/Linux 5 (Lenny)

• Debian GNU/Linux 6 (Squeeze)

• Debian GNU/Linux 7 (Wheezy)

• Red Hat Enterprise Linux (RHEL) / CentOS 6

• SuSE Linux Enterprise Server (SLES) 11 SP1

• Ubuntu server 12.04 LTS (Precise)

• Ubuntu server 12.10 (Quantal)

3.1.3 Hardware specifications and sizing for Rudder Root Server

A dedicated server is strongly recommended, either physical or virtual with at least one dedicated core. Rudder Server runs on
both 32 (if available) and 64 bit versions of every supported Operating System.

3.1.3.1 Memory

The required amount of RAM mainly depends on the number of managed nodes. A general rule for the minimal value is:

• less than 50 nodes: 2GB

• between 50 and 1000 nodes: 4GB

• more than 1000 nodes: 4GB + 1GB of RAM by 500 nodes above 1000.

When managing more than 1000 nodes, we also recommend you to use a multiserver installation for Rudder as described in
chapter Multiserver Rudder.

For large installations, you should also tune the amount of RAM given to:

• the web application, as explained in the section about webapplication RAM configuration

• PostgresSQL, as explained in the Optimize PostgreSQL Server section

3.1.3.2 Disk

The PostgreSQL database will take up most disk space needed by Rudder. The storage necessary for the database can be
estimated by counting around 150 to 400 kB by Directive, by Node and by day of retention of node’s execution reports (the
default is 4 days):

max_space = number of Directives * number of Nodes * retention duration in days * 400 kB

For example, a default installation with 500 nodes and an average of 50 Directives by node, should require between 14 GB and
38 GB of disk space for PostgreSQL.

Follow the Reports Retention section to configure the retention duration.

Rudder 2.11 - User Manual 8 / 133

3.2 Install Rudder Server

This chapter covers the installation of a Rudder Root Server, from the specification of the underlying server, to the initial setup
of the application.

Before all, you need to setup a server according to the server specifications. You should also configure the network. These topics
are covered in the Architecture chapter.

Ideally, this machine should have Internet access, but this is not a strict requirement.

As Rudder data can grow really fast depending on your number of managed nodes and number of rules, it is advised to separate
partitions to prevent your /var getting full and break your system. Special attention should be given to:

/var/lib/pgsql Or wherever is located your postgresql database. Can grow by several GB per day. Please see the database
maintenance chapter for more details about this

/var/rudder Contains most of your server information, LDAP database, etc.. Slower growth over time.

/var/log/rudder Reports logs can easily grow to 1.5GB per day.

3.2.1 Install Rudder Root server on Debian or Ubuntu

3.2.1.1 Add the Rudder packages repository

Each package that is published by Rudder Project is signed with our GPG signature. To ensure the packages you will install are
official builds and have not been altered, import our key into apt using the following command:

wget --quiet -O- "https://www.rudder-project.org/apt-repos/rudder_apt_key.pub" | sudo apt- ←↩
key add -

Our key fingerprint is:

pub 4096R/474A19E8 2011-12-15 Rudder Project (release key) <security@rudder-project.org>
Key fingerprint = 7C16 9817 7904 212D D58C B4D1 9322 C330 474A 19E8

Then run the following commands as root:

echo "deb http://www.rudder-project.org/apt-2.11/ $(lsb_release -cs) main" > /etc/apt/ ←↩
sources.list.d/rudder.list

aptitude update

This will add the package repository and finally update the local package cache.

3.2.1.2 Java on Debian/Ubuntu

The Rudder Root server needs a compatible Java Runtime Environment to run. In most cases, this will be installed automatically
thanks to packaging dependencies, however in some cases manual installation is required.

On Debian Wheezy (7) and above and Ubuntu Precise (12.04) and above, the available package is OpenJDK 7 JRE, namely
openjdk-7-jre. It will be installed automatically as a dependency of the Rudder packages, and does not require the non-free
component.

On Debian Squeeze (6) and Debian Lenny (5), the available package is Oracle Java 6 JRE, namely sun-java-6-jre, which is
in the non-free component. You must make sure this is enabled in your apt sources. Check that /etc/apt/sources.list
contains the following lines:

deb http://ftp.fr.debian.org/debian/ squeeze main contrib non-free
deb http://security.debian.org/ squeeze/updates main contrib non-free

Rudder 2.11 - User Manual 9 / 133

Tip
Your mirror may differ, ftp.fr.debian.org is only an example. Also, please adapt the distribution name if needed
(squeeze could be replaced by lenny).

On Ubuntu Natty (11.04) and previous Ubuntu versions, you will have to install Java yourself as the packaging of the Oracle
JVM is now restricted by Oracle™ and Rudder is not compatible with OpenJDK 6, which is the only available JDK from Ubuntu.
See http://www.java.com/fr/download/ to get Oracle’s JVM.

3.2.1.3 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

aptitude install rudder-server-root

Note
If Oracle Java 6 JRE is installed (usually on Debian Lenny (5) or Squeeze (6) only), you will be asked to accept the license of
the product during installation.

3.2.1.4 Incompatibility between Rudder server on Ubuntu and Rudder agents using syslog (RHEL/CentOS 5)

Warning
Any nodes running syslogd (not syslog-ng or rsyslog) will fail to send any reports about the configuration rules they
have applied to a Rudder Server running on Ubuntu (and only on Ubuntu). Rudder will apply rules on nodes but will
never get reports from them. Therefore Rudder will not be able to calculate compliance.
The only supported platform using syslogd by default is RHEL/CentOS 5, and several workarounds are available to fix
this:

1. Install another syslog server on your nodes, such as rsyslog or syslog-ng.

2. Change the rsyslog configuration on the Rudder server (running Ubuntu 12.04 or later) to use port 514 and
authorize this in the rsyslog configuration.

3. Setup iptables on the node to send syslog traffic to the correct port on your Rudder server.

4. Use a different OS for your Rudder server that Ubuntu Server 12.04 or later.

Now jump to the next section to configure your server.

3.2.2 Install Rudder Root server on SLES

3.2.2.1 Configure the package manager

Ensure that the zypper package manager is configured, and install Oracle Java 6 JRE or OpenJDK 7 JRE, for example available
on Oracle’s website: http://www.java.com.

http://www.java.com/fr/download/
http://www.java.com

Rudder 2.11 - User Manual 10 / 133

Warning
You might not be able to install Rudder rpm files locally with Zypper (for example with zypper install rudder-agent-
version.release-1.SLES.11.x86_64.rpm), due to a bug (bnc#929483 on SuSE bugtracker) in its RPM headers parsing
causing a segmentation fault. You can either:

• Install the packages directly from the repository, as described below

• Upgrade your libzypp package to a version including the fix provided by SuSE (upgrade for SLES11SP3 and for
SLES12)

• Use the rpm command to install packages locally (for example with rpm -i rudder-agent-version.release-
1.SLES.11.x86_64.rpm)

3.2.2.2 Add the Rudder packages repository

Each package that is published by Rudder Project is signed with our GPG signature. To ensure the packages you will install are
official builds and have not been altered, import our key into rpm using the following command:

rpm --import https://www.rudder-project.org/rpm-repos/rudder_rpm_key.pub

Our key fingerprint is:

pub 1024R/6F07D355 2012-11-09 Rudder Project (RPM release key) <security@rudder-project. ←↩
org>

Key fingerprint = 1141 A947 CDA0 4E83 82C1 B9C4 ADAB 3BD3 6F07 D355

Then run the following commands as root:

zypper ar -n "Normation RPM Repositories" http://www.rudder-project.org/rpm-2.11/ ←↩
SLES_11_SP1/ Normation

zypper refresh

This will add the Rudder package repository, then update the local package cache.

3.2.2.3 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

zypper in rudder-server-root

Tip
If you want to manage the Techniques Library with git on a SLES based system, you should download the SDK DVD and install
git-core using yast2 or zypper, or get the RPM using another channel.

Now jump to the next section to configure your server.

3.2.3 Install Rudder Root server on RHEL-like systems

3.2.3.1 Java on RHEL/CentOS

The Rudder Root server needs a compatible Java Runtime Environment to run.

https://bugzilla.novell.com/show_bug.cgi?id=889363
http://download.novell.com/Download?buildid=42q80kCaQxE
http://download.novell.com/Download?buildid=0cI2ELIttrI

Rudder 2.11 - User Manual 11 / 133

On RHEL/CentOS 6, the available package compatible with Rudder server is java-1.7.0-openjdk but Rudder is also
compatible with Oracle JRE 1.6 or later.

Oracle JRE 1.6, Oracle JRE 1.7 and OpenJDK 1.6 aren’t provided by the same virtual package on RHEL/CentOS 6 than Open-
JDK 1.7. Besides, only OpenJDK 1.7 is provided by default on RHEL/CentOS contrary to Oracle JRE.

This is why even if Rudder Server would work with Oracle JRE 1.6 or 1.7, the dependencies will not be resolved with them.

3.2.3.2 Add the Rudder packages repository

Each package that is published by Rudder Project is signed with our GPG signature. To ensure the packages you will install are
official builds and have not been altered, import our key into rpm using the following command:

rpm --import https://www.rudder-project.org/rpm-repos/rudder_rpm_key.pub

Our key fingerprint is:

pub 1024R/6F07D355 2012-11-09 Rudder Project (RPM release key) <security@rudder-project. ←↩
org>

Key fingerprint = 1141 A947 CDA0 4E83 82C1 B9C4 ADAB 3BD3 6F07 D355

Then run the following command as root:

RHEL/CentOS 6:

echo "[Rudder_2.11]
name=Rudder 2.11 Repository
baseurl=http://www.rudder-project.org/rpm-2.11/RHEL_6/
gpgcheck=1
gpgkey=https://www.rudder-project.org/rpm-2.11/RHEL_6/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

RHEL/CentOS 5:

echo "[Rudder_2.11]
name=Rudder 2.11 Repository
baseurl=http://www.rudder-project.org/rpm-2.11/RHEL_5/
gpgcheck=1
gpgkey=https://www.rudder-project.org/rpm-2.11/RHEL_5/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

3.2.3.3 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

yum install rudder-server-root

On RHEL-like systems, a firewall setup is enabled by default, and would need to be adjusted for Rudder to operate properly. You
have to allow all the flows described in the Network section.

Warning
Rudder doesn’t support SELinux yet (see http://www.rudder-project.org/redmine/issues/2882), so you should set it to
be permissive with this command:

setenforce 0

http://www.rudder-project.org/redmine/issues/2882

Rudder 2.11 - User Manual 12 / 133

Tip
The webapp runs on HTTPS/443 port so you need to allow access to your server on this port. The file to edit is /etc/syscon-
fig/iptables and should look like

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
allow SSH access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
allow HTTP access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT
allow HTTPS access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

The important line to have access to the Web interface being:

allow HTTPS access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT

Now jump to the next section to configure your server.

3.2.4 Initial configuration of your Rudder Root Server

After the installation, you have to configure some system elements, by launching the following initialisation script:

/opt/rudder/bin/rudder-init

This script will ask you to fill in the following details:

Allowed networks A list of IP networks authorized to connect to the server. We recommend that you specify all the networks
of your infrastructure. The syntax is the standard network/mask notation, for instance 192.168.0.0/24 or 10.0.0.
0/8. To add several networks, first type the first network, then press the return key - the script will ask if you wish to add
some more networks.

Tip
In case of typing error, or if you wish to reconfigure Rudder, you can execute this script again as many times as you want.

3.2.5 Validate the installation

Once all these steps have been completed, use your web browser to go to the URL given on the step described in the section
about initial configuration.

You should see a loading, then a login screen. Only two demo accounts are configured, without any right restriction as of now.

The setup of the Rudder server is now over. If you plan to manage hundreds or thousands of Nodes, please note that some
performance tuning can be necessary on the system.

Rudder 2.11 - User Manual 13 / 133

Files installed by the application

/etc System-wide configuration files are stored here: init scripts, configuration for apache, logrotate and rsyslog.

/opt/rudder Non variable application files are stored here.

/opt/rudder/etc Configuration files for Rudder services are stored here.

/var/log/rudder Log files for Rudder services are stored here.

/var/rudder Variable data for Rudder services are stored here.

/var/rudder/cfengine-community Data for CFEngine Community are stored here.

/var/rudder/configuration-repository/techniques Techniques are stored here.

/var/cfengine Data for CFEngine Nova are stored here.

/usr/share/doc/rudder* Documentation about Rudder packages.

3.3 Install Rudder Agent

This chapter gives a general presentation of the Rudder Agent, and describes the different configuration steps to deploy the
Rudder agent on the Nodes you wish to manage. Each Operating System has its own set of installation procedures.

The machines managed by Rudder are called Nodes, and can either be physical or virtual. For a machine to become a managed
Node, you have to install the Rudder Agent on it. The Node will afterwards register itself on the server. And finally, the Node
should be acknowledged in the Rudder Server interface to become a managed Node. For a more detailed description of the
workflow, please refer to the Advanced Usage part of this documentation.

Components
This agent contains the following tools:

1. The community version of CFEngine, a powerful open source configuration management tool.

2. FusionInventory , an inventory software.

3. An initial configuration set for the agent, to bootstrap the Rudder Root Server access.

These components are recognized for their reliability and minimal impact on performances. Our tests showed their memory
consumption is usually under 10 MB of RAM during their execution. So you can safely install them on your servers.
We grouped all these tools in one package, to ease the Rudder Agent installation.
To get the list of supported Operating systems, please refer to the list of supported Operating Systems for the Nodes.

3.3.1 Install Rudder Agent on Debian or Ubuntu

Each package that is published by Rudder Project is signed with our GPG signature. To ensure the packages you will install are
official builds and have not been altered, import our key into apt using the following command:

wget --quiet -O- "https://www.rudder-project.org/apt-repos/rudder_apt_key.pub" | sudo apt- ←↩
key add -

Our key fingerprint is:

pub 4096R/474A19E8 2011-12-15 Rudder Project (release key) <security@rudder-project.org>
Key fingerprint = 7C16 9817 7904 212D D58C B4D1 9322 C330 474A 19E8

http://www.cfengine.com
http://fusioninventory.org/

Rudder 2.11 - User Manual 14 / 133

Then add Rudder’s package repository:

• on Debian Squeeze:

sudo tee /etc/apt/sources.list.d/rudder.list <<EOF
deb http://www.rudder-project.org/apt-2.11/ $(lsb_release -cs) main
EOF

• on Ubuntu 12.04 and following, or Debian Wheezy and following:

sudo apt-add-repository http://www.rudder-project.org/apt-2.11/

Update your local package database to retrieve the list of packages available on our repository:

sudo aptitude update

Install the rudder-agent package:

sudo aptitude install rudder-agent

3.3.2 Install Rudder Agent on RHEL or CentOS

Each package that is published by Rudder Project is signed with our GPG signature. To ensure the packages you will install are
official builds and have not been altered, import our key into rpm using the following command:

rpm --import https://www.rudder-project.org/rpm-repos/rudder_rpm_key.pub

Our key fingerprint is:

pub 1024R/6F07D355 2012-11-09 Rudder Project (RPM release key) <security@rudder-project. ←↩
org>

Key fingerprint = 1141 A947 CDA0 4E83 82C1 B9C4 ADAB 3BD3 6F07 D355

Then you can download the package applicable to your version of RHEL/CentOS and to its architecture on

http://www.rudder-project.org/rpm-2.11/RHEL_5/
http://www.rudder-project.org/rpm-2.11/RHEL_6/

Or you can define a yum repository for RHEL/CentOS 6:

$ echo "[Rudder_2.11]
name=Rudder 2.11 Repository
baseurl=http://www.rudder-project.org/rpm-2.11/RHEL_6/
gpgcheck=1
gpgkey=https://www.rudder-project.org/rpm-2.11/RHEL_6/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Or for RHEL/CentOS 5:

$ echo "[Rudder_2.11]
name=Rudder 2.11 Repository
baseurl=http://www.rudder-project.org/rpm-2.11/RHEL_5/
gpgcheck=1
gpgkey=https://www.rudder-project.org/rpm-2.11/RHEL_5/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Install the package:

rpm -Uhv rudder-agent-2.11.0-1.EL.5.x86_64.rpm

Or if a yum repository has been set:

yum install rudder-agent

Rudder 2.11 - User Manual 15 / 133

3.3.3 Install Rudder Agent on SLES

Following commands are executed as the root user.

Warning
You might not be able to install Rudder rpm files locally with Zypper (for example with zypper install rudder-agent-
version.release-1.SLES.11.x86_64.rpm), due to a bug (bnc#929483 on SuSE bugtracker) in its RPM headers parsing
causing a segmentation fault. You can either:

• Install the packages directly from the repository, as described below

• Upgrade your libzypp package to a version including the fix provided by SuSE (upgrade for SLES11SP3 and for
SLES12)

• Use the rpm command to install packages locally (for example with rpm -i rudder-agent-version.release-
1.SLES.11.x86_64.rpm)

Each package that is published by Rudder Project is signed with our GPG signature. To ensure the packages you will install are
official builds and have not been altered, import our key into rpm using the following command:

rpm --import https://www.rudder-project.org/rpm-repos/rudder_rpm_key.pub

Our key fingerprint is:

pub 1024R/6F07D355 2012-11-09 Rudder Project (RPM release key) <security@rudder-project. ←↩
org>

Key fingerprint = 1141 A947 CDA0 4E83 82C1 B9C4 ADAB 3BD3 6F07 D355

Then add the Rudder packages repository:

• on a SLES 11 node:

zypper ar -n "Rudder RPM Repositories" \
http://www.rudder-project.org/rpm-2.11/SLES_11_SP1/ Rudder

• on a SLES 10 node:

zypper sa "http://www.rudder-project.org/rpm-2.11/SLES_10_SP3/" Rudder

Update your local package database to retrieve the list of packages available on our repository:

zypper ref

Install the rudder-agent package:

zypper install rudder-agent

3.3.4 Configure and validate

3.3.4.1 Configure Rudder Agent

Configure the IP address of the Rudder Root Server in the following file

sudo tee /var/rudder/cfengine-community/policy_server.dat <<EOF
@@replace_by_rudder_server_ip@@
EOF

https://bugzilla.novell.com/show_bug.cgi?id=889363
http://download.novell.com/Download?buildid=42q80kCaQxE
http://download.novell.com/Download?buildid=0cI2ELIttrI

Rudder 2.11 - User Manual 16 / 133

Tip
We advise you to use the IP address of the Rudder Root Server. The DNS name of this server can also be accepted if you
have a complete DNS infrastructure matching the IP of the Nodes with their hostnames.

3.3.4.2 Start Rudder Agent:

sudo /etc/init.d/rudder-agent start

3.3.4.3 Validate new Node

Several minutes after the start of the agent, a new Node should be pending in the Rudder web interface.

You will be able to browse its inventory, and accept it to manage its configuration with Rudder.

You may force the agent execution to force an immediate inventory by issuing the following command:

/var/rudder/cfengine-community/bin/cf-agent -KI

Rudder 2.11 - User Manual 17 / 133

Chapter 4

Upgrade

This short chapter covers the upgrade of the Rudder Server Root and Rudder Agent from older versions to the latest version,
2.11.

Please note that you can upgrade directly from Rudder 2.6.x, 2.9.x or 2.10.x to Rudder 2.11. However, upgrades from 2.3.x,
2.4.x, 2.5.x, 2.7.x and 2.8.x are no longer supported. If you are still running one of those, please first upgrade to one of the
supported versions above.

The upgrade is quite similar to the installation.

A big effort has been made to ensure that all upgrade steps are performed automatically by packaging scripts. Therefore, you
shouldn’t have to do any upgrade procedures manually, but you will note that several data migrations occur during the upgrade
process.

4.1 Caution cases

Rudder 2.11.* onwards contains a new CFEngine version (3.6) which is more strict with the parsing of its promises and introduces
new promise attributes.

To have a successful upgrade these steps should be followed:

• Make sure the Rudder server to be upgraded to the last 2.6 or 2.10 version, depending on the one you are currently running.

• Ensure that all node’s promises have been regenerated since the server upgrade to this version (don’t forget that your Techniques
will not be upgraded automatically, follow the Technique Upgrade section to upgrade them manually)

– On Rudder WebUI, at the top right of the screen, click on Regenerate now

– You can use the API from the server with this command: curl http://localhost/rudder/api/deploy/reload

• Upgrade all agents connected to that server to 2.11.*

• Upgrade the Rudder server to 2.11

4.1.1 Known bugs

• After upgrade, if the web interface has display problems, empty your navigator cache and/or logout/login.

http://localhost/rudder/api/deploy/reload

Rudder 2.11 - User Manual 18 / 133

4.2 On Debian or Ubuntu

Following commands are executed as the root user.

Add Rudder project repository:

echo "deb http://www.rudder-project.org/apt-2.11/ $(lsb_release -cs) main" > /etc/apt/ ←↩
sources.list.d/rudder.list

Update your local package database to retrieve the list of packages available on our repository:

apt-get update

For Rudder Server, upgrade all the packages associated to rudder-server-root:

• With apt-get:

apt-get install rudder-server-root ncf ncf-api-virtualenv

and after the upgrade of these packages, restart jetty to apply the changes on the Web application:

service rudder-jetty restart

For Rudder Agent, upgrade the rudder-agent package:

apt-get install rudder-agent

Warning
Rudder includes a script for upgrading all files, databases, etc. . . which need migrating. Therefore, you should not
replace your old files by the new ones when apt-get/aptitude asks about this, unless you want to reset all your parame-
ters.

You can now upgrade your local techniques.

4.3 On RHEL or CentOS

Following commands are executed as the root user.

Define a yum repository for RHEL/CentOS 6:

$ echo "[Rudder_2.11]
name=Rudder 2.11 Repository
baseurl=http://www.rudder-project.org/rpm-2.11/RHEL_6/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.11/RHEL_6/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Or for RHEL/CentOS 5:

$ echo "[Rudder_2.11]
name=Rudder 2.11 Repository
baseurl=http://www.rudder-project.org/rpm-2.11/RHEL_5/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.11/RHEL_5/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Rudder 2.11 - User Manual 19 / 133

For Rudder Server (RHEL 6 only), upgrade the rudder-* and ncf packages:

yum update "rudder-*" "ncf*"

and after the upgrade of these packages, restart jetty to apply the changes on the Web application:

service rudder-jetty restart

For Rudder Agent, upgrade the rudder-agent package:

yum update rudder-agent

You can now upgrade your local techniques.

4.4 On SLES

Following commands are executed as the root user.

Add the Rudder packages repository:

• With zypper on a SLES 11 system:

zypper ar -n "Rudder RPM Repositories" \
http://www.rudder-project.org/rpm-2.11/SLES_11_SP1/ Rudder

• With zypper on a SLES 10 system:

zypper sa "http://www.rudder-project.org/rpm-2.11/SLES_10_SP3/" Rudder

Update your local package database to retrieve the list of packages available on our repository:

zypper ref

For Rudder Server, upgrade all the packages associated to rudder-server-root:

zypper update "rudder-*" "ncf*"

and after the upgrade of these packages, restart jetty to apply the changes on the Web application:

service rudder-jetty restart

For Rudder Agent, upgrade the rudder-agent package:

zypper update rudder-agent

You can now upgrade your local techniques.

4.5 Technique upgrade

At the first installation, Rudder will automatically deploy a Technique library in the /var/rudder/configuration-rep
ository/techniques directory.

When upgrading Rudder to another version, a new (updated) Technique library will be deployed in /opt/rudder/share/
techniques, and Rudder will automatically take care of updating the system Techniques in the configuration-repository direc-
tory.

However, the other Techniques will not be updated automatically (yet), so you will have to do it yourself.

Rudder 2.11 - User Manual 20 / 133

Caution
Please keep in mind that if you did manual modifications on the Techniques in existing directories, or created new
versions of them, you will have some merging work to do.

To upgrade you local techniques, run the following commands on the Rudder Root Server:

root@node:~# cd /var/rudder/configuration-repository
root@node:~# cp -a /opt/rudder/share/techniques/* techniques/
root@node:~# git status
#~Now, inspect the differences. If no conflict is noticeable, then go ahead.
root@node:~# git add techniques/
root@node:~# git commit -m "Technique upgrade" # Here, put a meaningful message about why ←↩

you are updating.

After the commit has been validated by git, please go to the Rudder web interface, to the Administration tab, Policy Server tab,
and click on "Reload Techniques". It will reload the Technique library and trigger a full redeployment on nodes.

Please check that the deployment is successful before logging out.

Rudder 2.11 - User Manual 21 / 133

Chapter 5

Rudder Web Interface

This chapter is a general presentation of the Rudder Web Interface. You will find how to authenticate in the application, a
description of the design of the screen, and some explanations about usage of common user interface items like the search fields
and the reporting screens.

5.1 Authentication

When accessing the Rudder web interface, a login / password is required. The default account is "admin" (Password: admin).

You can change the user accounts by following the User management procedure.

5.2 Presentation of Rudder Web Interface

The web interface is organised according to the concepts described earlier. It is divided in three logical parts: Node Management,
Configuration Management and Administration.

5.2.1 Rudder Home

The home page summarizes the content of the other parts and provides quick links for the most common actions.

Rudder 2.11 - User Manual 22 / 133

Figure 5.1: Rudder Homepage

5.2.2 Node Management

In the Node Management section, you will find the validation tool for new Nodes, a search engine for validated Nodes, and the
management tool for groups of Nodes.

Rudder 2.11 - User Manual 23 / 133

Figure 5.2: Node Management welcome screen

5.2.3 Configuration Management

In the Configuration Management section, you can select the Techniques, configure the Directives and manage the Rules.

Figure 5.3: Configuration Management welcome screen

5.2.4 Administration

The Administration section provides some general settings: you can setup the available networks for the Policy Server, view the
event logs and manage your plugin collection.

Rudder 2.11 - User Manual 24 / 133

Figure 5.4: Administration welcome screen

5.3 Units supported as search parameters

Some parameters for the advanced search tool allow using units. For example, in the search criterion for RAM size, you can type
512MB instead of a value in bytes. This paragraph describes supported units by parameter type.

5.3.1 Bytes and multiples

All criteria using a memory size (RAM, hard disk capacity, etc) is by default expected in bytes. If no other unit is specified, all
values will be assumed to be in bytes.

5.3.2 Convenience notation

All memory sizes can be written using spaces or underscores (_) to make the numbers easier to read. Numbers must begin with
a digit. For example, the following numbers are all valid and all worth 1234:

1234
1 234
1_234
1234_

The following number is not valid:

Rudder 2.11 - User Manual 25 / 133

_1234

5.3.3 Supported units

Units used are non binary units, and a multiplication factor of 1024 is applied between each unit. Units are case-insensitive.
Therefore, Mb is identical to mB or mb or MB.

In detail, the following units are supported (provided in lower case, see above):

Notation Alternate Value
b o bytes (equivalent to not specifying a

unit)
kb ko 1024 bytes
mb mo 1024ˆ2 bytes
gb go 1024ˆ3 bytes
tb to 1024ˆ4 bytes
pb po 1024ˆ5 bytes
eb eo 1024ˆ6 bytes
zb zo 1024ˆ7 bytes
yb yo 1024ˆ8 bytes

Table 5.1: Units supported by Rudder search engine

Rudder 2.11 - User Manual 26 / 133

Chapter 6

Node Management

6.1 Node Inventory

Rudder integrates a node inventory tool which harvest useful information about the nodes. This information is used by Rudder
to handle the nodes, and you can use the inventory information for Configuration Management purposes: search Nodes, create
Groups of Nodes, determine some configuration management variables.

In the Rudder Web Interface, each time you see a Node name, you can click on it and display the collection of information about
this Node. The inventory is organized as following: first tab is a summary of administrative information about the Node; other
tabs are specialized for hardware, network interfaces, and software for every Node; tabs for reports and logs are added on Rudder
managed Nodes.

The Node Summary presents administrative information like the Node Hostname, Operating System, Rudder Client name, Rudder
ID and Date when the inventory was last received. When the Node has been validated, some more information is displayed like
the Node Name and the Date first accepted in Rudder.

The hardware information is organized as following: General, File systems, Bios, Controllers, Memory, Port, Processor, Slot,
Sound, Storage, Video.

Network connections are detailed as following: Name of the interface on the system, IP address, Network Mask, usage of DHCP
or static configuration, MAC address, Type of connection, Speed of the connection and Status.

And finally, you get the list of every software package present on the system, including version and description.

On Nodes managed by Rudder, the Reports tab displays information about the status of the latest run of Rudder Agent, whereas
the Logs tab displays information about changes for the Node.

6.2 Accept new Nodes

At the starting point, the Rudder Server doesn’t know anything about the Nodes. After the installation of the Rudder Agent,
each Node registers itself to the Rudder Server, and sends a first inventory. Every new Node must be manually validated in the
Rudder Web Interface to become part of Rudder Managed Nodes. This task is performed in the Node Management > Accept
new Nodes section of the application. You can select Nodes waiting for an approval, and determine whether you consider them
as valid or not. Click on each Node name to display the extended inventory. Click on the magnifying glass icon to display the
policies which will be applied after the validation.

Example 6.1 Accept the new Node debian-node.rudder-project.org

1. Install and configure the Rudder Agent on the new Node debian-node.rudder-project.org

2. Wait a few minutes for the first run of the Rudder Agent.

3. Navigate to Node Management > Accept new Nodes.

Rudder 2.11 - User Manual 27 / 133

4. Select the new Node in the list.

5. Validate the Node.

6. The Node is now integrated in Rudder, you can search it using the search tools.

6.3 Search Nodes

You can navigate to Node Management > Search Nodes to display information about the Nodes which have been already
validated, and are managed by Rudder.

6.3.1 Quick Search

The easiest search tool is the Quick search: type in the search field the first letters of the Rudder ID, Reference, or Hostname;
choose the accurate Node in the autocompletion list; validate and look at the Node information. This search tool can be very
useful to help you create a new search in the Advanced Search.

Example 6.2 Quick search the Node called debian-node
Assuming you have one managed Node called debian-node.rudder-project.org, which ID in Rudder is d06b1c6c-
f59b-4e5e-8049-d55f769ac33f.

1. Type in the Quick Search field the de or d0.

2. Autocompletion will propose you this Node: debian-node.rudder-project.org--d06b1c6c-f59b-
4e5e-8049-d55f769ac33f [d06b1c6c-f59b-4e5e-8049-d55f769ac33f].

6.3.2 Advanced Search

In the Advanced Search tool, you can create complex searches based on Node Inventory information. The benefit of the Advanced
Search tool is to save the query and create a Group of Nodes based on the search criteria.

• 1. Select a field

The selection of the field upon which the criteria will apply is a two step process. The list of fields is not displayed unordered and
extensively. Fields have been grouped in the same way they are displayed when you look at information about a Node. First you
choose among these groups: Node, Network Interface, Filesystem, Machine, RAM, Storage, BIOS, Controller, Port, Processor,
Sound Card, Video Card, Software, Environment Variable, Processes, Virtual Machines; then you choose among the list of fields
concerning this theme.

• 2. Select the matching rule

The matching rule can be selected between following possibilities: Is defined, Is not defined, =, 6= or Regex followed by the term
you are searching for presence or absence. Depending on the field, the list of searchable terms is either an free text field, either
the list of available terms.

• a. Regex matching rule

You can use regular expressions to find whatever you want in Node inventories. A search request using a regexp will look for
every node that match the pattern you entered.

Those regexps follow Java Pattern rules. See http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html for more de-
tails.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Rudder 2.11 - User Manual 28 / 133

Example 6.3 Search node having an ip address matching 192.168.x.y
Assuming you want to search every node using an ip address match 192.168.x.y, where x<10 and y could be everything. You
will to add that line to your search request:

• Node summary, Ip address, Regex, 192\ .168\ .\d\ . .*

• b. Composite search

Some fields allow you to look for more than one piece of information at a time. That’s the case for environment variable. For
those fields you have to enter the first element then the separator then following elements. The name of the fields tells you about
what is expected. It would look like firstelement<sep>secondelement assuming that <sep> is the separator.

Example 6.4 Search Environment Variable LANG=C.
Assuming you want to search every node having the environment variable LANG set to C. You will have to add that search line
to your request:

• Environment variable, key=value, =, LANG=C.

• 3. Add another rule

You can select only one term for each matching rule. If you want to create more complex search, then you can add another rule
using the + icon. All rules are using the same operand, either AND or OR. More complex searches mixing AND and OR operands
are not available at the moment.

Example 6.5 Advanced search for Linux Nodes with ssh.
Assuming you want to search all Linux Nodes having ssh installed. You will create this 2 lines request:

1. Operator: AND.

2. First search line: Node, Operating System, =, Linux.

3. Second search line: Software, Name, =, ssh.

6.4 Group of Nodes

You can create Group of Nodes based on search criteria to ease attribution of Rules in Configuration Management. The creation
of groups can be done from the Node Management > Search Nodes page, or directly from the Groups list in Node Management
> Groups. A group can be either Dynamic or Static.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Example 6.6 Create a dynamic group for Linux Nodes with ssh having an ip address in 192.18.42.x.
To create that dynamic group like described above, You first have to create a new group with group type set to Dynamic. Then
you have to set its search request to :

1. Operator: AND.

2. First search line: Node, Operating System, =, Linux.

3. Second search line: Software, Name, =, ssh.

4. Third search line: Node summary, Ip address, Regex, 192\ .168\ .\d\ . .* .

Finally, you have to click on Search to populate the group and click on Save to actually save it.

Rudder 2.11 - User Manual 29 / 133

Chapter 7

Configuration Management

7.1 Techniques

7.1.1 Concepts

A Technique defines a set of operations and configurations to reach the desired behaviour. This includes the initial set-up, but
also a regular check on the parameters, and automatic repairs (when possible).

All the Techniques are built with the possibility to change only part of a service configuration: each parameter may be either
active, either set on the "Don’t change" value, that will let the default values or in place. This allows for a progressive deployment
of the configuration management.

Finally, the Techniques will generate a set of reports which are sent to the Rudder Root Server, which will let you analyse the
percentage of compliance of your policies, and soon, detailed reports on their application.

7.1.2 Manage the Techniques

The Techniques shipped with Rudder are presented in a library that you can reorganize in Configuration > Techniques. The
library is organized in two parts: the available Techniques, and the selection made by the user.

Technique Library This is an organized list of all available Techniques. This list can’t be modified: every change made by a
user will be applied to the Active Techniques.

Active Techniques This is an organized list of the Techniques selected and modified by the user. By default this list is the
same as the Technique Library. Techniques can be disabled or deleted, and then activated again with a simple drag and
drop. Categories can be reorganised according to the desired taxonomy. A Technique can appear only once in the Active
Techniques list.

Tip
The current version of Rudder has only an handful of Techniques. We are aware that it considerably limits the use of the
application, but we choose to hold back other Techniques that did not, from our point of view, have the sufficient quality. In the
future, there will be some upgrades including more Techniques.

Warning
The creation of new Techniques is not covered by the Web interface. This is an advanced task which is currently not
covered by this guide.

Rudder 2.11 - User Manual 30 / 133

7.1.3 Available Techniques

7.1.3.1 Application management

Apache 2 HTTP server This Policy Template will configure the Apache HTTP server and ensure it is running. It will ensure
the "apache2" package is installed (via the appropriate packaging tool for each OS), ensure the service is running and start
it if not and ensure the service is configured to run on initial system startup. Configuration will create a rudder vhost file.

APT package manager configuration Configure the apt-get and aptitude tools on GNU/Linux Debian and Ubuntu, especially
the source repositories.

OpenVPN client This Policy Template will configure the OpenVPN client service and ensure it is running. It will ensure the
"openvpn" package is installed (via the appropriate packaging tool for each OS), ensure the service is running and start it
if not and ensure the service is configured to run on initial system startup. Configuration will create a rudder.conf file. As
of this version, only the PSK peer identification method is supported, please use the "Download File" Policy Template to
distribute the secret key.

Package management for Debian / Ubuntu / APT based systems Install, update or delete packages, automatically and con-
sistently on GNU/Linux Debian and Ubuntu.

Package management for RHEL / CentOS / RPM based systems Install, update or delete packages, automatically and con-
sistently on GNU/Linux CentOS and RHEL.

7.1.3.2 Distributing files

Copy a file Copy a file on the machine

Distribute ssh keys Distribute ssh keys on servers

Download a file Download a file for a standard URL (HTTP/FTP), and set permissions on the downloaded file.

7.1.3.3 File state configuration

Set the permissions of files Set the permissions of files

7.1.3.4 System settings: Miscellaneous

Time settings Set up the time zone, the NTP server, and the frequency of time synchronisation to the hardware clock. Also
ensures that the NTP service is installed and started.

7.1.3.5 System settings: Networking

Hosts settings Configure the contents of the hosts filed on any operating system (Linux and Windows).

IPv4 routing management Control IPv4 routing on any system (Linux and Windows), with four possible actions: add, delete
(changes will be made), check presence or check absence (a warning may be returned, but no changes will be made) for a
given route.

Name resolution Set up the IP address of the DNS server name, and the default search domain.

NFS Server Configure a NFS server

Rudder 2.11 - User Manual 31 / 133

7.1.3.6 System settings: Process

Process Management Enforce defined parameters on system processes

7.1.3.7 System settings: Remote access

OpenSSH server Install and set up the SSH service on Linux nodes. Many parameters are available.

7.1.3.8 System settings: User management

Group management This Policy Template manages the target host(s) groups. It will ensure that the defined groups are present
on the system.

Sudo utility configuration This Policy Template configures the sudo utility. It will ensure that the defined rights for given
users and groups are correctly defined.

User management Control users on any system (Linux and Windows), including passwords, with four possible actions: add,
delete (changes will be made), check presence or check absence (a warning may be returned, but no changes will be made)
for a given user.

7.2 Directives

Once you have selected and organized your Techniques, you can create your configurations in the Configuration Management
> Directives section.

Directive This is an instance of a Technique, which allows to set values for the parameters of the latter. Each Directive can have
a unique name. A Directive should be completed with a short and a long description, and a collection of parameters for the
variables defined by the Technique.

The screen is divided in three parts:

• on the left, your list of Techniques and Directives,

• on the right the description of the selected Technique or Directive.

• at the bottom, the configuration items of the selected Directive.

Click on the name of a Technique to show its description.

Click on the name of a Directive to see the Directive Summary containing the description of the Technique its derived from, and
the configuration items of the Directive.

Example 7.1 Create a Directive for Name resolution
Use the Technique Name resolution to create a new Directive called Google DNS Servers, and shortly described as Use
Google DNS Server. Check in the options Set nameservers and Set DNS search suffix. Set the value of the variable DNS resolver
to 8.8.8.8 and of Domain search suffix according to your organization, like rudder-project.org.

Rudder 2.11 - User Manual 32 / 133

7.3 Rules

Rule It is the application of one or more directives to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

When a Rule is created or modified, the promises for the target nodes are generated. Rudder computes all the promises each
nodes must have, and makes them available for the nodes. This process can take up to several minutes, depending on the number
of managed nodes and the Policy Server configuration. During this time, the "Regenerate now" button is replaced by a moving
bar and a message stating "Generating rules". You can also press the "Regenerate now" button on the top of the interface if you
feel the generated promises should be modified (for instance, if you changed the configuration of Rudder)

7.4 Variables

7.4.1 User defined parameters

Rudder provides a simple way to add common and reusable variables in either plain Directives, or techniques created using the
Technique editor: the parameters.

The parameters enable the user to specify a content that can be put anywhere, using the following syntax:

• In Directives: ${rudder.param.name} will expand the content of the "name" parameter.

• In the Technique Editor: ${rudder_parameters.name} will do the same.

Using this, you can specify common file headers (this is the default parameter, "rudder_file_edit_header"), common DNS or
domain names, backup servers, site-specific elements. . .

7.4.2 System variables

Rudder also provides system variables that contain information about nodes and their policy server. You can use them like user
defined parameters.

The information about a Node:

• ${rudder.node.id} returns the Rudder generated id of the Node

• ${rudder.node.hostname} returns the hostname of the Node

• ${rudder.node.admin} returns the administrator login of the Node

The information about a Node’s policy server.

• ${rudder.node.policyserver.id} returns the Rudder generated id of the Policy Server

• ${rudder.node.policyserver.hostname} returns the hostname of the Policy Server

• ${rudder.node.policyserver.admin} returns the administrator login of the Policy Server

Rudder 2.11 - User Manual 33 / 133

7.5 Compliance

A Directive contains one or multiple components. Each component generates one or multiple reports, based on the number of
keys in this component. For example, for a Sudoers Directive, each user is a key. These states are available in reports:

Success The system is already in the desired state. No change is needed. Conformity is gained.

Repaired The system was not in the desired state. Rudder applied some change and repaired what was not correct. Now the
system is in the desired state. Conformity is gained.

Error The system is not in the desired state. Rudder couldn’t repair the system.

Applying When a Directive is applied, Rudder waits during 10 minutes for a report. During this period, the Directive is said
Applying.

No answer The system didn’t send any reports. Rudder waited for 10 minutes and no report was received.

A Directive has gained conformity on a Node if every report for each component, for each key, is in Success state. This is the
only condition.

Based on these facts, the compliance of a Rule is calculated like this :

Number of Nodes for which conformity is reached for every Directive of the Rule / Total number of Nodes on which the Rule has
been applied

Figure 7.1: Reports

Rudder 2.11 - User Manual 34 / 133

7.6 Validation workflow in Rudder

The validation workflow is a feature whose purpose is to hold any change (Rule, Directive, Group) made by users in the web
interface, to be reviewed first by other users with the adequate privileges before actual deployment.

The goal is to improve safety and knowledge sharing in the team that is using Rudder.

To enable it, you only have to tick "Enable Change Requests" in the Administration - Settings tab of the web interface. (This
feature is optional and can be disabled at any time without any problem, besides risking the invalidation of yet-unapproved
changes)

7.6.1 What is a Change request ?

A Change request represents a modification of a Rule/Directive/Group from an old state to a new one. The Change is not saved
and applied by the configuration, before that, it needs to be reviewed and approved by other members of the team.

A Change request has:

• An Id (an integer > 0)

• A title.

• A description.

• A creator.

• A status.

• Its own history.

This information can be updated on the change request detail page. For now, a Change request is linked to one change at a time.

7.6.1.1 Change request status

There is 4 Change request status:

Pending validation

• The change has to be reviewed and validated.

• Can be send to: Pending deployment, Deployed, Cancelled.

Pending deployment

• The change was validated, but now require to be deployed.

• Can be send to: Deployed, Cancelled.

Deployed

Rudder 2.11 - User Manual 35 / 133

• The change is deployed.

• This is a final state, it can’t be moved anymore.

Cancelled

• The change was not approved.

• This is a final state, it can’t be moved anymore.

Here is a diagram about all those states and transitions:

7.6.1.2 Change request management page

All Change requests can be seen on the /secure/utilities/changeRequests page. There is a table containing all requests, you can
access to each of them by clicking on their id. You can filter change requests by status and only display what you need.

7.6.1.3 Change request detail page

Each Change request is reachable on the /secure/utilities/changeRequest/id.

Rudder 2.11 - User Manual 36 / 133

The page is divided into two sections:

Change request information display common information (title, description, status, id) and a form to edit them.

Change request content In this section, there is two tabs:

• History about that change request

• Display the change proposed

Rudder 2.11 - User Manual 37 / 133

7.6.2 How to create a Change request ?

If they are enabled in Rudder, every change in Rudder will make you create a Change request. You will have a popup to enter
the name of your change request and a change message.

The change message will be used as description for you Change Request, so we advise to fill it anyway to keep an explanation
ab out your change.

Change request are not available for Rule/Directive/Groups creation, they are only active if the Rule/Directive/Groups existed
before:

Here is a small table about all possibilities:

Rudder 2.11 - User Manual 38 / 133

7.6.3 How to validate a Change request ?

7.6.3.1 Roles

Not every user can validate or deploy change in Rudder. Only those with one of the following roles can act on Change request:

Validator Can validate Change request

Deployer To deploy Change Request

Both of those roles:

• Give you access to pending Change requests

• Allow you to perform actions on them (validate or cancel)

You have to change users in /opt/rudder/etc/rudder-users.xml and include those rights. Without one of those roles, you can
only access Change Request in Deployed or Cancelled and those you opened before.

You can deploy directly if you have both the validator and deployer roles. The administrator Role gives you both the deployer
and valdiator role.

There is also the possibility to access Change requests in Read only mode by using the role validator_read or deployer_read.

Rudder 2.11 - User Manual 39 / 133

7.6.3.2 Self Validations

Using Change requests means that you want your team to share knowledge, and validate each other change. So by default:

• Self validation is disabled.

• Self deployment is enabled.

Those two behaviours can be changed in the property file /opt/rudder/etc/rudder-web.properties. rudder.workflow.self.validation
and rudder.workflow.self.deployment are the properties that define this behaviour.

7.6.4 Change request and conflicts

When the initial state of a Change request has changed (i.e.: you want to modify a Directive, but someone else changes about
that Directive has been accepted before yours), your change can’t be validated anymore.

For now, we decided to reduce to the possibility of an error or inconsistency when there are concurrent changes. In a future
version of Rudder, there will be a system to handle those conflicts, and make sure actual changes are not overwritten.

7.6.5 Notifications:

In several parts of Rudder webapp there are some Notifications about Change requests.

7.6.5.1 Pending change requests

This notification is displayed only if the validator/deployer role is active on your user account. It shows you how many Change
requests are waiting to be reviewed/deployed. clicking on it will lead you to the Change request management page, with a filter
already applied.

Rudder 2.11 - User Manual 40 / 133

7.6.5.2 Change already proposed on Rule/Directive/Group

When there is a change about the Rule/Directive/Group already proposed but not deployed/cancelled, you will be notified that
there are some pending Change requests about that element. You will be provided a Link to those change request, So you can
check if the change is already proposed.

Rudder 2.11 - User Manual 41 / 133

Chapter 8

Manage your IT

8.1 How to

8.1.1 Enforce a line is present in a file only once

Enforcing that a line to be present in a single occurence in a file is not an easy process to automate. Providing templates is an
easy way to achieve this but not always possible.

If you don’t want to use a template, you can use Technique Enforce a File content to control the content of a file.

The whole logic to edit a file so it contain only one occurence of a line is:

• Add the line, so it will be added if missing)

• Replace line that looks almost like our line by the line

• Delete all duplicated lines

With these 3 steps, You will end with one line!

So, here is a small example: let’s say you want /etc/sysconfig/sysctl to contain line ENABLE_SYSRQ="yes"

You will need to create a Directive based on Enforce a File content with the following content:

Rudder 2.11 - User Manual 42 / 133

8.2 Security considerations

8.2.1 Data confidentiality

Rudder is designed to strictly separate policies between nodes, and to only let a node access its own policies.

This section will give details about how the policies are secured, and which content is node-specific or global.

8.2.1.1 Private data

All confidential information should be stored in private data, namely:

• the directives, groups, rules, and their parameters

• the techniques parameters in the Technique Editor

• the shared-files directory

There are:

• always transfered encrypted between nodes (using agent copy protocol or https for the interface and the API)

Rudder 2.11 - User Manual 43 / 133

• only available to the nodes that need it

• only accessible locally by the users that need it

More precisely:

• root server:

– all the data is present on it

– files are readable and writable only by the root user and (for some of them) the rudder group

– some data is also accessible from our backends (PostgreSQL, OpenLDAP), but only locally (the services are listenning on
loopback) and from Rudder-specific users, whith passwords only accessible to the root user

– accessible remotely by the Web interface (needs an authorized user account) or the API (needs a token)

• relay: only the data needed for the served nodes and the relay itself are available and stored locally, only accessible to the root
user

• node: only the data needed to configure the node is available and stored locally, only accessible to the root user

8.2.1.2 Common data

This refers to content available from all nodes in the authorized networks, readable from all users on the nodes, and that can be
transfered withtout encryption.

These unprotected contents are:

• the tools (/var/rudder/tools)

• the common ncf part (/var/rudder/ncf/common), which includes all the content distibuted in the ncf package

• the Rudder techniques sources (without parameters), which includes all the content distibuted in the rudder-techniques
package

Rudder 2.11 - User Manual 44 / 133

Chapter 9

Administration

This chapter covers basic administration task of Rudder services like configuring some parameters of the Rudder policy server,
reading the services log, and starting, stopping or restarting Rudder services.

9.1 Archives

9.1.1 Archive usecases

The archive feature of Rudder allows to:

• Exchange configuration between multiple Rudder instances, in particular when having distinct environments;

• Keep an history of major changes.

9.1.1.1 Changes testing

Export the current configuration of Rudder before you begin to make any change you have to test: if anything goes wrong, you
can return to this archived state.

9.1.1.2 Changes qualification

Assuming you have multiple Rudder instances, each on dedicated for the developement, qualification and production environ-
ment. You can prepare the changes on the development instance, export an archive, deploy this archive on the qualification
environment, then on the production environment.

Versions of the Rudder servers
If you want to export and import configurations between environments, the version of the source and target Rudder
server must be exactly the same. If the versions don’t match (even if only the minor versions are different), there is a
risk that the import will break the configuration on the target Rudder server.

9.1.2 Concepts

In the Administration > Archives section of the Rudder Server web interface, you can export and import the configuration of
Rudder Groups, Directives and Rules. You can either archive the complete configuration, or only the subset dedicated to Groups,
Directives or Rules.

Rudder 2.11 - User Manual 45 / 133

When archiving configuration, a git tag is created into /var/rudder/configuration-repository. This tag is then
referenced in the Rudder web interface, and available for download as a zip file. Please note that each change in the Rudder web
interface is also committed in the repository.

The content of this repository can be imported into any Rudder server (with the same version).

9.1.3 Archiving

To archive Rudder Rules, Groups, Directives, or make a global archive, you need to go to the Administration > Archives section
of the Rudder Server web interface.

To perform a global archive, the steps are:

1. Click on Archive everything - it will update the drop down list Choose an archive with the latest data

2. In the drop down list Choose an archive, select the newly created archive (archives are sorted by date), for example
2015-01-08 16:39

3. Click on Download as zip to download an archive that will contains all elements.

9.1.4 Importing configuration

On the target server, importing the configuration will "merge" them with the existing configuration: every groups, rules, directives
or techniques with the same identifier will be replaced by the import, and all others will remain untouched.

To import the archive on the target Rudder server, you cn follow the following steps:

1. Uncompress the zip archive in /var/rudder/configuration-repository

2. If necessary, correct all files permissions: chown -R root:rudder directives groups parameters rul
eCategories rules techniques

3. Add all files in the git repository: git add .&& git commit -am "Importing configuration"

4. Finally, in the Web interface, go to the Administration > Archives section, and select Latest Git commit in the drop down
list in the Global archive section, and click on Restore everything to restore the configuration.

Tip
You can also perform the synchronisation from on environment to another by using git, through a unique git repository refer-
enced on both environment.
For instance, using one unique git repository you can follow this workflow:

1. On Rudder test:

a. Use Rudder web interface to prepare your policy;

b. Create an archive;

c. git push to the central repository;

2. On Rudder production:

a. git pull from the central repository;

b. Use Rudder web interface to import the qualified archive.

Rudder 2.11 - User Manual 46 / 133

9.1.5 Deploy a preconfigured instance

You can use the procedures of Archiving and Restoring configuration to deploy preconfigured instance. You would prepare first
in your labs the configuration for Groups, Directives and Rules, create an Archive, and import the Archive on the new Rudder
server installation

9.2 Event Logs

Every action happening in the Rudder web interface are logged in the PostgreSQL database. The last 1000 event log entries are
displayed in the Administration > View Event Logs section of Rudder web application. Each log item is described by its ID,
Date, Actor, and Event Type, Category and Description. For the most complex events, like changes in nodes, groups, techniques,
directives, deployments, more details can be displayed by clicking on the event log line.

Event Categories

• User Authentication

• Application

• Configuration Rules

• Policy

• Technique

• Policy Deployment

• Node Group

• Nodes

• Rudder Agents

• Policy Node

• Archives

9.3 Policy Server

The Administration > Policy Server Management section sum-up information about Rudder policy server and its parameters.

9.3.1 Configure allowed networks

Here you can configure the networks from which nodes are allowed to connect to Rudder policy server to get their updated rules.

You can add as many network as you want, the expected format is: networkip/mask, for example 42.42.0.0/16.

9.3.2 Clear caches

Clear cached data, like node configuration. That will trigger a full redeployment, with regeneration of all promises files.

9.3.3 Reload dynamic groups

Reload dynamic groups, so that new nodes and their inventories are taken into account. Normally, dynamic group are automati-
cally reloaded unless that feature is explicitly disable in Rudder configuration file.

Rudder 2.11 - User Manual 47 / 133

9.4 Plugins

Rudder is an extensible software. The Administration > Plugin Management section sum-up information about loaded plugins,
their version and their configuration.

A plugin is a JAR archive. The web application must be restarted after installation of a plugin.

9.4.1 Install a plugin

To install a plugin, just copy the JAR file and the configuration file in the according directories.

/opt/rudder/jetty7/plugins/ This directory contains the JAR files of the plugins.

/opt/rudder/etc/plugins/ This directory contains the configuration files of the plugins.

9.5 Basic administration of Rudder services

9.5.1 Restart the agent of the node

To restart the Rudder Agent, use following command on a node:

/etc/init.d/rudder-agent restart

Tip
This command can take more than one minute to restart the CFEngine daemon. This is not a bug, but an internal protection
system of CFEngine.

9.5.2 Restart the root rudder service

9.5.2.1 Restart everything

You can restart all components of the Rudder Root Server at once:

/etc/init.d/rudder-server-root restart

9.5.2.2 Restart only one component

Here is the list of the components of the root server with a brief description of their role, and the command to restart them:

CFEngine server Distribute the CFEngine configuration to the nodes.

/etc/init.d/rudder-agent restart

Web server application Execute the web interface and the server that handles the new inventories.

/etc/init.d/rudder-jetty restart

Web server front-end Handle the connection to the Web interface, the received inventories and the sharing of the UUID
Rudder Root Server.

Rudder 2.11 - User Manual 48 / 133

/etc/init.d/apache2 restart

LDAP server Store the inventories and the Node configurations.

/etc/init.d/rudder-slapd restart

SQL server Store the received reports from the nodes.

/etc/init.d/postgresql* restart

9.6 Password upgrade

This version of Rudder uses a central file to manage the passwords that will be used by the application: /opt/rudder/etc/rudder-
passwords.conf

When first installing Rudder, this file is initialized with default values, and when you run rudder-init, it will be updated with
randomly generated passwords.

On the majority of cases, this is fine, however you might want to adjust the passwords manually. This is possible, just be cautious
when editing the file, as if you corrupt it Rudder will not be able to operate correctly anymore and will spit numerous errors in
the program logs.

As of now, this file follows a simple syntax: ELEMENT:password

You are able to configure three passwords in it: The OpenLDAP one, the PostgreSQL one and the authenticated WebDAV one.

If you edit this file, Rudder will take care of applying the new passwords everywhere it is needed, however it will restart the
application automatically when finished, so take care of notifying users of potential downtime before editing passwords.

Here is a sample command to regenerate the WebDAV password with a random password, that is portable on all supported
systems. Just change the "RUDDER_WEBDAV_PASSWORD" to any password file statement corresponding to the password
you want to change.

sed -i s/RUDDER_WEBDAV_PASSWORD.*/RUDDER_WEBDAV_PASSWORD:$(dd if=/dev/urandom count=128 bs ←↩
=1 2>&1 | md5sum | cut -b-12)/ /opt/rudder/etc/rudder-passwords.conf

9.7 User management

Change the users authorized to connect to the application. You can define authorization level for each user

9.7.1 Configuration of the users using a XML file

9.7.1.1 Generality

The credentials of a user are defined in the XML file /opt/rudder/etc/rudder-users.xml. This file expects the
following format:

<authentication hash="sha512">
<user name="alice" password="xxxxxxx" role="administrator"/>
<user name="bob" password="xxxxxxx" role="administration_only, node_read"/>
<user name="custom" password="xxxxxxx" role="node_read,node_write,configuration_read, ←↩

rule_read,rule_edit,directive_read,technique_read"/>
</authentication>

Rudder 2.11 - User Manual 49 / 133

The name and password attributes are mandatory (non empty) for the user tags. The role attribute can be omitted but the user
will have no permission, and only valid attributes are recognized.

Every modification of this file should be followed by a restart of the Rudder web application to be taken into account:

/etc/init.d/rudder-jetty restart

9.7.1.2 Passwords

The authentication tag should have a "hash" attribute, making "password" attributes on every user expect hashed passwords. Not
specifying a hash attribute will fallback to plain text passwords, but it is strongly advised not to do so for security reasons.

The algorithm to be used to create the hash (and verify it during authentication) depend on the value of the hash attribute. The
possible values, the corresponding algorithm and the Linux shell command need to obtain the hash of the "secret" password for
this algorithm are listed here:

Value Algorithm Linux command to hash the
password

"md5" MD5 read mypass;echo -n
$mypass | md5sum

"sha" or "sha1" SHA1 read mypass;echo -n
$mypass | shasum

"sha256" or "sha-256" SHA256 read mypass;echo -n
$mypass | sha256sum

"sha512" or "sha-512" SHA512 read mypass;echo -n
$mypass | sha512sum

Table 9.1: Hashed passwords algorithms list

When using the suggested commands to hash a password, you must enter the command, then type your password, and hit return.
The hash will then be displayed in your terminal. This avoids storing the password in your shell history.

Here is an example of authentication file with hashed password:

<authentication hash="sha256">

<!-- In this example, the hashed password is: "secret", hashed as a sha256 value -->
<user name="carol" password="2 ←↩

bb80d537b1da3e38bd30361aa855686bde0eacd7162fef6a25fe97bf527a25b" role="administrator ←↩
"/>

</authentication>

9.7.2 Configuring an LDAP authentication provider for Rudder

If you are operating on a corporate network or want to have your users in a centralized database, you can enable LDAP authenti-
cation for Rudder users.

9.7.2.1 LDAP is only for authentication

Take care of the following limitation of the current process: only authentication is delegated to LDAP, NOT authorizations. So
you still have to declare user’s authorizations in the Rudder user file (rudder-users.xml).

A user whose authentication is accepted by LDAP but not declared in the rudder-users.xml file is considered to have no rights at
all (and so will only see a reduced version of Rudder homepage, with no action nor tabs available).

Rudder 2.11 - User Manual 50 / 133

The credentials of a user are defined in the XML file /opt/rudder/etc/rudder-users.xml. It expects the same format
as regular file-based user login, but in this case "name" will be the login used to connect to LDAP and the password field will be
ignored and should be set to "LDAP" to make it clear that this Rudder installation uses LDAP to log users in.

Every modification of this file should be followed by a restart of the Rudder web application to be taken into account:

/etc/init.d/rudder-jetty restart

9.7.2.2 Enable LDAP authentication

LDAP authentication is enabled by setting the property rudder.auth.ldap.enable to true in file /opt/rudder/
etc/rudder-web.properties

The LDAP authentication process is a bind/search/rebind in which an application connection (bind) is used to search (search) for
a user entry given some base and filter parameters, and then, a bind (rebind) is tried on that entry with the credential provided by
the user.

So next, you have to set-up the connection parameters to the LDAP directory to use. There are five properties to change:

• rudder.auth.ldap.connection.url

• rudder.auth.ldap.connection.bind.dn

• rudder.auth.ldap.connection.bind.password

• rudder.auth.ldap.searchbase

• rudder.auth.ldap.filter

The search base and filter are used to find the user. The search base may be left empty, and

Here are some usage examples,

on standard LDAP:

rudder.auth.ldap.searchbase=ou=People
rudder.auth.ldap.filter=(&(uid={0})(objectclass=person))

on Active Directory:

rudder.auth.ldap.searchbase=
rudder.auth.ldap.filter=(&(sAMAccountName={0})(objectclass=user))

9.7.3 Authorization management

For every user you can define an access level, allowing it to access different pages or to perform different actions depending on
its level.

You can also build custom roles with whatever permission you want, using a type and a level as specified below.

In the xml file, the role attribute is a list of permissions/roles, separated by a comma. Each one adds permissions to the user. If
one is wrong, or not correctly spelled, the user is set to the lowest rights (NoRights), having access only to the dashboard and
nothing else.

Rudder 2.11 - User Manual 51 / 133

9.7.3.1 Pre-defined roles

Name Access level
administrator All authorizations granted, can access and modify

everything
administration_only Only access to administration part of rudder, can do

everything within it.
user Can access and modify everything but the administration

part
configuration Can only access and act on configuration section
read_only Can access to every read only part, can perform no action
inventory Access to information about nodes, can see their inventory,

but can’t act on them
rule_only Access to information about rules, but can’t modify them

for each user you can define more than one role, each role adding its authorization to the user.

Example: "rule_only,administration_only" will only give access to the "Administration" tab as well as the Rules.

9.7.3.2 Custom roles

You can set a custom set of permissions instead of a pre-defined role.

A permission is composed of a type and a level:

• Type: Indicates what kind of data will be displayed and/or can be set/updated by the user

– "configuration", "rule", "directive", "technique", "node", "group", "administration", "deployment".

• Level: Access level to be granted on the related type

– "read", "write", "edit", "all" (Can read, write, and edit)

Depending on that value(s) you give, the user will have access to different pages and action in Rudder.

Usage example:

• configuration_read→Will give read access to the configuration (Rule management, Directives and Parameters)

• rule_write, node_read→Will give read and write access to the Rules and read access to the Nodes

9.7.4 Going further

Rudder aims at integrating with your IT system transparently, so it can’t force its own authentication system.

To meet this need, Rudder relies on the modular authentication system Spring Security that allows to easily integrate with
databases or an entreprise SSO like CAS, OpenID or SPNEGO. The documentation for this integration is not yet available, but
don’t hesitate to reach us on this topic.

9.8 Monitoring

This section will give recommendations for:

• Monitoring Rudder itself (besides standard monitoring)

• Monitoring the state of your configuration management

Rudder 2.11 - User Manual 52 / 133

9.8.1 Monitoring Rudder itself

9.8.1.1 Monitoring a Node

The monitoring of a node mainly consists in checking that the Node can speak with its policy server, and that the agent is run
regularly.

A good place to start is to check the content of the last run log file. It can be found in /var/rudder/cfengine-community/output/previous.

You can search lines containing FATAL:, Fatal :, or could not get an updated configuration with a log monitoring tool to auto-
matically detect communication issues with the policy server.

To get the last run time, you can lookup the modification date of /var/rudder/cfengine-community/last_successful_inputs_update.

9.8.1.2 Monitoring a Server

You can use use regular API calls to check the server is running and has access to its data. For example, you can issue the
following command to get the list of currently defined rules:

curl -X GET -H "X-API-Token: yourToken" http://your.rudder.server/rudder/api/latest/rules

You can then check the status code (which should be 200). See the API documentation for more information.

You can also check the webapp logs (in /var/log/rudder/webapp/year_month_day.stderrout.log) for error messages.

9.8.2 Monitoring your configuration management

There are two interesting types of information:

• Events: all the changes made by the the agents on your Nodes

• Compliance: the current state of your Nodes compared with the expected configuration

The Web interface gives access to this, but we will here see how to process events automatically. They are available on the
root server, in /var/log/rudder/compliance/non-compliant-reports.log. This file contains two types of reports about all the nodes
managed by this server:

• All the modifications made by the agent

• All the errors that prevented the application of a policy

The lines have the following format:

[%DATE%] N: %NODE_UUID% [%NODE_NAME%] S: [%RESULT%] R: %RULE_UUID% [%RULE_NAME%] D: % ←↩
DIRECTIVE_UUID% [%DIRECTIVE_NAME%] T: %TECHNIQUE_NAME%/%TECHNIQUE_VERSION% C: [% ←↩
COMPONENT_NAME%] V: [%KEY%] %MESSAGE%

In particular, the RESULT field contains the type of event (change or error, respectively result_repaired and result_error).

Below is a basic Logstash configuration file for parsing Rudder events. You can then use Kibana to explore the data, and create
graphs and dashboards to visualize the changes in your infrastructure.

input {
file {

path => "/var/log/rudder/compliance/non-compliant-reports.log"
}

}

filter {
grok {

https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

Rudder 2.11 - User Manual 53 / 133

match => { "message" => "^\[%{DATA:date}\] N: %{DATA:node_uuid} \[%{DATA:node}\] S: ←↩
\[%{DATA:result}\] R: %{DATA:rule_uuid} \[%{DATA:rule}\] D: %{DATA:directive_uuid} ←↩
\[%{DATA:directive}\] T: %{DATA:technique}/%{DATA:technique_version} C: \[%{DATA: ←↩
component}\] V: \[%{DATA:key}\] %{DATA:message}$" }

}
Replace the space in the date by a "T" to make it parseable by Logstash
mutate {

gsub => ["date", " ", "T"]
}
Parse the event date
date {

match => ["date" , "ISO8601"]
}
Remove the date field
mutate { remove => "date" }
Remove the key field if it has the "None" value
if [key] == "None" {

mutate { remove => "key" }
}

}

output {
stdout { codec => rubydebug }

}

9.9 Use Rudder inventory in other tools

Rudder centralizes the information about your managed systems, and you can use this information in other tools, mainly through
the API. We well here give a few examples.

9.9.1 Export to a spreadsheet

You can export the list of your nodes to a spreadsheet file (xls format) by using a tool available in the rudder-tools repository.

Simple follow the installation instructions, and run it against your Rudder server. You will get a file containing:

You can easily modify the script to add other information.

9.9.2 Use the inventory in Rundeck

Rundeck is a tool that helps automating infrastructures, by defining jobs that can be run manually or automatically. There is a
plugin for Rundeck that allows using Rudder inventory data in Rundeck.

9.9.3 Use the inventory in Ansible

There is an inventory plugin for Ansible that makes possible to use Rudder inventory (including groups, nodes, group ids, node
ids, and node properties) as inventory for Ansible, for example for orchestration tasks on your platform.

https://github.com/normation/rudder-tools/tree/master/contrib/rudder_nodes_list
http://rundeck.org
http://rundeck.org/plugins/2015/12/02/rudder-nodes.html
https://github.com/ansible/ansible/blob/devel/contrib/inventory/rudder.py

Rudder 2.11 - User Manual 54 / 133

Chapter 10

Usecases

This chapter gives a few examples for using Rudder. We have no doubt that you’ll have your own ideas, that we’re impatient to
hear about. . .

10.1 Dynamic groups by operating system

Create dynamic groups for each operating system you administer, so that you can apply specific policies to each type of OS.
When new nodes are added to Rudder, these policies will automatically be enforced upon them.

10.2 Library of preventive policies

Why not create policies for emergency situations in advance? You can then put your IT infrastructure in "panic" mode in just a
few clicks.

For example, using the provided Techniques, you could create a Name resolution Directive to use your own internal DNS servers
for normal situations, and a second, alternative Directive, to use Google’s public DNS servers, in case your internal DNS servers
are no longer available.

10.3 Standardizing configurations

You certainly have your own best practices (let’s call them good habits) for setting up your SSH servers.

But is that configuration the same on all your servers? Enforce the settings your really want using an OpenSSH server policy and
apply it to all your Linux servers. SSH servers can then be stopped or reconfigured manually many times, Rudder will always
restore your preferred settings and restart the SSH server in less than 5 minutes.

Rudder 2.11 - User Manual 55 / 133

Chapter 11

Advanced usage

This chapter describe advanced usage of Rudder.

11.1 Node management

11.1.1 Reinitialize policies for a Node

To reinitialize the policies for a Node, delete the local copy of the Applied Policies fetched from the Rudder Server, and create a
new local copy of the initial promises.

root@node:~# rm -rf /var/rudder/cfengine-community/inputs/*
root@node:~# cp -a /opt/rudder/share/initial-promises/* /var/rudder/cfengine-community/ ←↩

inputs/

At next run of the Rudder Agent (it runs every five minutes), the initial promises will be used.

Caution
Use this procedure with caution: the Applied Policies of a Node should never get broken, unless some major change
has occurred on the Rudder infrastructure, like a full reinstallation of the Rudder Server.

11.1.2 Change the agent run schedule

By default, the agent runs on all nodes every 5 minutes. You can modify this value in Administration → Settings → Agent
Run Schedule, as well as the "splay time" across nodes (a random delay that alters scheduled run time, intended to spread load
across nodes).

Warning
When reducing notably the run interval length, reporting can be in No report state until the next run of the agent, which
can take up to the previous (longer) interval.

11.1.3 Installation of the Rudder Agent

11.1.3.1 Static files

At installation of the Rudder Agent, files and directories are created in following places:

Rudder 2.11 - User Manual 56 / 133

/etc Scripts to integrate Rudder Agent in the system (init, cron).

/opt/rudder/share/initial-promises Initialization promises for the Rudder Agent. These promises are used until
the Node has been validated in Rudder. They are kept available at this place afterwards.

/opt/rudder/lib/perl5 The FusionInventory Inventory tool and its Perl dependencies.

/opt/rudder/bin/run-inventory Wrapper script to launch the inventory.

/opt/rudder/sbin Binaries for CFEngine Community.

/var/rudder/cfengine-community This is the working directory for CFEngine Community.

11.1.3.2 Generated files

At the end of installation, the CFEngine Community working directory is populated for first use, and unique identifiers for the
Node are generated.

/var/rudder/cfengine-community/bin/ CFEngine Community binaries are copied there.

/var/rudder/cfengine-community/inputs Contains the actual working CFEngine Community promises. Initial
promises are copied here at installation. After validation of the Node, Applied Policies, which are the CFEngine promises
generated by Rudder for this particular Node, will be stored here.

/var/rudder/cfengine-community/ppkeys An unique SSL key generated for the Node at installation time.

/opt/rudder/etc/uuid.hive An unique identifier for the Node is generated into this file.

11.1.3.3 Services

After all of these files are in place, the CFEngine Community daemons are launched:

cf-execd This CFEngine Community daemon is launching the CFEngine Community Agent cf-agent every 5 minutes.

cf-serverd This CFEngine Community daemon is listening on the network on Rudder Root and Relay servers, serving
policies and files to Rudder Nodes.

11.1.3.4 Configuration

At this point, you should configure the Rudder Agent to actually enable the contact with the server. Type in the IP address of the
Rudder Root Server in the following file:

echo *root_server_IP_address* > /var/rudder/cfengine-community/policy_server.dat

11.1.4 Rudder Agent interactive

You can force the Rudder Agent to run from the console and observe what happens.

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

Rudder 2.11 - User Manual 57 / 133

Error: the name of the Rudder Root Server can’t be resolved
If the Rudder Root Server name is not resolvable, the Rudder Agent will issue this error:

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

Unable to lookup hostname (rudder-root) or cfengine service: Name or service not ←↩
known

To fix it, either you set up the agent to use the IP address of the Rudder root server instead of its Domain name, either
you set up accurately the name resolution of your Rudder Root Server, in your DNS server or in the hosts file.
The Rudder Root Server name is defined in this file

root@node:~# echo *IP_of_root_server* > /var/rudder/cfengine-community/policy_server ←↩
.dat

Error: the CFEngine service is not responding on the Rudder Root Server
If the CFEngine is stopped on the Rudder Root Server you will get this error:

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI
!! Error connecting to server (timeout)
!!! System error for connect: "Operation now in progress"
!! No server is responding on this port
Unable to establish connection with rudder-root

Restart the CFEngine service:

user@rudder-root:~$ sudo /var/rudder/cfengine-community/bin/cf-serverd

11.1.5 Processing new inventories on the server

11.1.5.1 Verify the inventory has been received by the Rudder Root Server

There is some delay between the time when the first inventory of the Node is sent, and the time when the Node appears in the
New Nodes of the web interface. For the brave and impatient, you can check if the inventory was sent by listing incoming Nodes
on the server:

ls /var/rudder/inventories/incoming/

11.1.5.2 Process incoming inventories

On the next run of the CFEngine agent on Rudder Root Server, the new inventory will be detected and sent to the Inventory
Endpoint. The inventory will be then moved in the directory of received inventories. The Inventory Endpoint do its job and the
new Node appears in the interface.

You can force the execution of CFEngine agent on the console:

user@rudder-root:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

11.1.5.3 Validate new Nodes

User interaction is required to validate new Nodes.

Rudder 2.11 - User Manual 58 / 133

11.1.5.4 Prepare policies for the Node

Policies are not shared between the Nodes for obvious security and confidentiality reasons. Each Node has its own set of policies.
Policies are generated for Nodes according in the following states:

1. Node is new;

2. Inventory has changed;

3. Technique has changed;

4. Directive has changed;

5. Group of Node has changed;

6. Rule has changed;

7. Regeneration was forced by the user.

Rudder 2.11 - User Manual 59 / 133

Figure 11.1: Generate policy workflow

11.1.6 Agent execution frequency on nodes

11.1.6.1 Checking configuration (CFEngine)

Rudder is configured to check and repair configurations using the CFEngine agent every 5 minutes, at 5 minutes past the hour,
10 minutes past the hour, etc.

The exact run time on each machine will be delayed by a random interval, in order to "smooth" the load across your infrastructure
(also known as "splay time"). This reduces simultaneous connections on relay and root servers (both for the CFEngine server
and for sending reports).

Rudder 2.11 - User Manual 60 / 133

Up to and including Rudder 2.10.x, this random interval is between 0 and 1 minutes. As of Rudder 2.10.x and later, this random
interval is between 0 and 5 minutes.

11.1.6.2 Inventory (FusionInventory)

The FusionInventory agent collects data about the node it’s running on such as machine type, OS details, hardware, software,
networks, running virtual machines, running processes, environment variables. . .

This inventory is scheduled once every 24 hours, and will happen in between 0:00 and 5:00 AM. The exact time is randomized
across nodes to "smooth" the load across your infrastructure.

11.2 Password management

You might want to change the default passwords used in Rudder’s managed daemons for evident security reasons.

11.2.1 Configuration of the postgres database password

You will have to adjust the postgres database and the rudder-web.properties file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the Postgres database user

su - postgres -c "psql -q -c \"ALTER USER blah WITH PASSWORD ’$PASS’\""

• Insert the password in the rudder-web.properties file

sed -i "s%^rudder.jdbc.password.*$%rudder.jdbc.password=$PASS%" /opt/rudder/etc/rudder-web. ←↩
properties

11.2.2 Configuration of the OpenLDAP manager password

You will have to adjust the OpenLDAP and the rudder-web.properties file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the password in the slapd configuration

HASHPASS=‘/opt/rudder/sbin/slappasswd -s $PASS‘
sed -i "s%^rootpw.*$%rootpw $HASHPASS%" /opt/rudder/etc/openldap/slapd.conf

• Update the password in the rudder-web.properties file

sed -i "s%^ldap.authpw.*$%ldap.authpw=$PASS%" /opt/rudder/etc/rudder-web.properties

Rudder 2.11 - User Manual 61 / 133

11.2.3 Configuration of the WebDAV access password

This time, the procedure is a bit more tricky, as you will have to update the Technique library as well as a configuration file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the password in the apache htaccess file

Tip
On some systems, especially SuSE ones, htpasswd is called as "htpasswd2"

htpasswd -b /opt/rudder/etc/htpasswd-webdav rudder $PASS

• Update the password in Rudder’s system Techniques

cd /var/rudder/configuration-repository/techniques/system/common/1.0/
sed -i "s%^.*davpw.*$% \"davpw\" string => \"$PASS\"\;%" site.st
git commit -m "Updated the rudder WebDAV access password" site.st

• Update the Rudder Directives by either reloading them in the web interface (in the "Configuration Management/Techniques"
tab) or restarting jetty (NOT recommended)

11.3 Policy generation

Each time a change occurs in the Rudder interface, having an impact on the CFEngine promises needed by a node, it is necessary
to regenerate the modified promises for every impacted node. By default this process is launched after each change.

11.3.1 Regenerate now button

The button Regenerate now on the top right of the screen permit you to force the regeneration of the promises. As changes
in the inventory of the nodes are not automatically taken into account by Rudder, this feature can be useful after some changes
impacting the inventory information.

11.4 Technique creation

Rudder provides a set of pre-defined Techniques that cover some basic configuration and system administration needs. You can
also create your own Techniques, to implement new functionalities or configure new services. This paragraph will walk you
through this process.

There is two ways to configure new Techniques, either thanks to the web Technique Editor in Rudder or by coding them by hand.

The use of the Technique Editor (code name: ncf-builder [http://www.ncf.io/pages/ncf-builder.html]) is the easiest way to create
new Techniques and is fully integrated with Rudder. On the other hand, it does not allow the same level of complexity and
expressiveness than coding a Technique by hand. Of course, coding new Techniques by hand is a more involved process that
needs to learn how the Technique description language and Technique reporting works.

We advice to always start to try to create new Techniques with the Technique Editor and switch to the hand-coding creation only
if you discover specific needs not addressed that way.

http://www.ncf.io/pages/ncf-builder.html

Rudder 2.11 - User Manual 62 / 133

11.4.1 Recommended solution: Technique Editor

The easiest way to create your own Techniques is to use the Technique editor, a web interface to create and manage Techniques
based on the ncf framework.

Creating a technique in the Technique Editor will generate a Technique for Rudder automatically. You can then use that Technique
to create a Directive that will be applied on your Nodes thanks to a Rule.

For more information about ncf and the Technique editor, you can visit: http://www.ncf.io/

11.4.1.1 Using the Technique Editor

The Technique Editor is available in the Directive screen or directly in the Utilities menu. Once on the Technique Editor, creating
a Technique simply consist to add desired "Generic Methods" building block and configure them.

When the Technique match your expectations, hitting save will automatically add it to available Technique in the Directive screen
of Rudder (in the "User Technique" category).

11.4.1.2 Logs

In case of any issue with the Technique Editor, the first step should always be to look for its log messages. These logs are sent to
Apache system error logs:

• On Debian, by default: /var/log/apache2/error.log

• On RHEL, by default: /var/log/httpd/error_log

11.4.2 Understanding how Technique Editor works

In this chapter, we are giving an overview about how the Technique Editor works and how it is integrated with the main Rudder
application.

11.4.2.1 Directory layout

As explained in http://www.ncf.io/, ncf uses a structured directory tree composed of several layers of logic, from internal libraries
to Techniques and user services. All the files and logic in these folders will be named "library" for simplicity

ncf directory structure exists in two root folders:

• /usr/share/ncf/tree

– This is the standard library installation folder. It is created and updated by the the ncf package. This folder will be completely
overwritten when you update ncf package so you should never modify anything here: it will be lost at some point.

• /var/rudder/configuration-repository/ncf

– This is were you add your own ncf Generic Methods and Techniques. Techniques created with the Technique Editor will be
located here, and both Generic Methods and Techniques in that place will be accessible in the Technique Editor alongside
what is provided by the standard library.

To share those folders to all nodes, Rudder makes a copy of these folders in /var/rudder/ncf:

• /var/rudder/ncf/local is a copy of /var/rudder/configuration-repository/ncf

• /var/rudder/ncf/common is a copy /usr/share/ncf/tree

They are synchronized automatically by the agent running on the server. So any modification done in files in these directories
will be lost at the next synchronization.

A node updates its ncf local library by copying the content of these two folders during its promise update phase.

http://www.ncf.io/
http://www.ncf.io/

Rudder 2.11 - User Manual 63 / 133

11.4.2.2 Technique Editor integration with Rudder

Here we will explain Technique Editor behavior and what workflow are initialized by different action on the Technique Editor.

Each action in the Technique Editor interface produces requests to an API defined over ncf.

All of the requests are authenticated thanks to a token passed in the JSESSIONID header. The token is generated when an
authenticated user is connected to the Rudder interface (typically thanks to his browser).

That token is shared to the Technique Editor interface, which itself passes the JSESSIONID header to all requests.

If you have authentication issue, check that your Rudder session is not expired.

Get request Get request will get all Techniques and Generic Methods in a path passed as parameters of the request in the "path"
javascript variable:

https://you-rudder/ncf-builder/#!?path=/var/rudder/configuration-repository/ncf

Get requests are triggered when accessing Technique editor.

The ncf API will parse all files in the parameter path by running "cf-promises -pjson" on all Techniques, checking that all
Techniques are correctly formed.

The ncf API will also look to all Generic Methods description data to build the catalog of available Generic Methods.

The resulting information are sent back to the Technique Editor for displaying.

Post requests Post requests are issued when a Technique is created, modified or deleted. They will only work on Techniques
available in the path given in parameter.

They are triggered when clicking on save/delete button.

The main difference with get requests is that hooks are launched before and after the action is made.

We will see all hooks behavior in the following dedicated hooks section.

11.4.2.3 Hooks

On each POST request, pre- and post- hooks are executed by the Technique Editor. These hooks are used for the Rudder
integration to help transform pure ncf Techniques into Rudder one.

• pre-hooks are located in: /var/rudder/configuration-repository/ncf/pre-hooks.d

• post-hooks are located in: /var/rudder/configuration-repository/ncf/post-hooks.d

As of March 2015, we have two post-hooks defined and no pre-hooks:

• post.write_technique.commit.sh

– It commits the Technique newly created into Rudder Git configuration repository located in /var/rudder/configuration-
repository.

• post.write_technique.rudderify.sh

– It generates a valid Rudder Technique from a the newly created Technique and reloads Rudder Technique Library so that
updates are taken into account.

If you want to run post hooks by hand, you can use the following command:

/var/rudder/configuration-repository/ncf/post-hooks.d/post.write_technique.commit. ←↩
sh /var/rudder/configuration-repository bundle_name

https://you-rudder/ncf-builder/#!?path=/var/rudder/configuration-repository/ncf

Rudder 2.11 - User Manual 64 / 133

11.4.3 Create Technique manually

11.4.3.1 Prerequisite

To create a Technique, you’ll need a few things:

CFEngine knowledge Rudder’s Techniques are implemented using CFEngine. Rudder takes care of a lot of the work of using
CFEngine, but you’ll need to have a reasonable understanding of the CFEngine syntax.

Rudder installation for testing To be able to test your new Technique, you’ll need a working Rudder installation (at least a
server and a node).

Text editor The only other tool you need is your favorite text editor!

11.4.3.2 Define your objective

Before starting to create a new Technique, have you checked that it doesn’t already exist in Rudder? The full list of current
Techniques is available from GitHub, at GitHub rudder-techniques repository.

OK, now we’ve got that over with, let’s go on.

A Technique should be an abstract configuration. This means that your Technique shouldn’t just configure something one way, but
instead it should implement how to configure something, and offer options for users to choose what way they want it configured.
Before starting, make sure you’ve thought through what you want to create.

Here’s a quick checklist to help:

• Do you need to install packages?

• Do you need to create or edit configuration files?

• Do you need to copy files from a central location?

• Do you need to launch processes or check that they’re running?

• Do you need to run commands to get things working?

Once you’ve made a list of what needs doing, consider what options could be presented in the user interface, when you create a
Directive from your new Technique. Intuitively, the more variables there are, the more flexible your Technique will be. However,
experience shows that making the Technique too configurable will actually make it harder to use, so a subtle balance comes in to
play here.

At this stage, make a list of all the variables that should be presented to users configuring a Directive from your Technique.

11.4.3.3 Initialize your new Technique

The simplest way to create a new Technique and be able to test it as you work is to start on a Rudder server. Open a terminal and
connect to your Rudder server by ssh, and cd into the directory where Techniques are stored:

$ cd /var/rudder/configuration-repository/techniques

Under this directory, you’ll find a set of categories, and sub-categories. Before creating your Technique, choose a category to put
it in, and change to that directory. For example:

$ cd applications

You can consult the description of each category by looking at the category.xml file in each directory. For this example:

http://github.com/normation/rudder-techniques/

Rudder 2.11 - User Manual 65 / 133

$ cat category.xml
<xml>

<name>Application management</name>
<description>This category contains Techniques designed to install,

configure and manage applications</description>
</xml>

Once you’ve decided on a category, it’s time to create the basic skeleton of your Technique. The technical name for your
Technique is it’s directory name, so choose wisely:

mkdir sampleTechnique

All directories under this one are version numbers. Let’s start with a simple 1.0 version. From now on, we’ll work in this
directory.

mkdir sampleTechnique/1.0
cd sampleTechnique/1.0

Now, you need a minimum of two files to get your Technique working:

metadata.xml This file describes the Technique, and configures how it will be displayed in the web interface.

st files These files are templates for CFEngine configuration files. You need at least one, but can have as many as you like.
Rudder processes them to generate .cf files ready to be used by CFEngine.

To get started, copy and paste these sample files, or download them from GitHub:

metadata.xml (original file: technique-metadata-sample.xml)

include::technique-metadata-sample.xml

sample_technique.st (original file: technique-st-sample.xml)

include::technique-st-sample.xml

11.4.3.4 Define variables

WORK IN PROGRESS Define metadata. Enter the variables in sections in the metadata.xml file. Cf http://www.rudder-
project.org/foswiki/Development/PolicyTemplateXML

11.4.3.5 First test in the Rudder interface

Load the new Technique into Rudder and check that the variables and sections are displayed as you expect.

11.4.3.6 Implement the behavior

WORK IN PROGRESS Write CFEngine promises to implement the behavior that your Template should have.

11.4.3.7 Read in the variables from Rudder

WORK IN PROGRESS Using StringTemplate notation. . . Cf http://www.rudder-project.org/foswiki/Development/Technique

11.4.3.8 Add reporting

WORK IN PROGRESS The reports format Cf http://www.rudder-project.org/foswiki/Development/ReportsInTechniques

https://github.com/normation/rudder-techniques/blob/master/technique-metadata-sample.xml
https://github.com/normation/rudder-techniques/blob/master/technique-st-sample.xml
http://www.rudder-project.org/foswiki/Development/PolicyTemplateXML
http://www.rudder-project.org/foswiki/Development/PolicyTemplateXML
http://www.rudder-project.org/foswiki/Development/
http://www.rudder-project.org/foswiki/Development/ReportsIn

Rudder 2.11 - User Manual 66 / 133

11.5 REST API

Rudder can be used as a web service using a REST API.

This documentation covers the version 1 of Rudder’s API, that has been present since Rudder 2.4.

The version 2 has now been implemented, which is much more complete, in Rudder 2.7, and has a dedicated documentation
available here: http://www.rudder-project.org/rudder-api-doc/

Warning
The version 1 is to be considered legacy and should not be used anymore. Please migrate to version 2 to benefit from
the new authentication features and more complete existing methods.

11.5.1 Default setup

Access to REST API can be either using Rudder authentication, either unauthenticated, using authentication mechanisms set
elsewhere, for instance at Apache level.

11.5.1.1 Rudder Authentication

By default, the access to the REST API is open to users not authenticated in Rudder.

The method of authentication can be configured in /opt/rudder/etc/rudder-web.properties

rudder.rest.allowNonAuthenticatedUser=true

11.5.1.2 Apache access rules

By default, the REST API is exposed for localhost only, at http://localhost/rudder/api.

Example 11.1 Example usage of non authenticated REST API
Unrestricted access can be granted to local scripts accessing to localhost, whereas remote access to the REST API will be
either denied, or restricted through autentication at apache level.

11.5.1.3 User for REST actions

Actions done using the REST API are logged by default as run by the user UnknownRestUser.

To change the name of this user, add following header to the HTTP request:

X-REST-USERNAME: MyConfiguredRestUser

If the REST API is authenticated, the authenticated user name will be used in the logs.

11.5.2 Status

http://localhost/rudder/api/status Check if Rudder server is up and return OK. If Rudder server is not re-
sponding, an error is displayed.

http://www.rudder-project.org/rudder-api-doc/

Rudder 2.11 - User Manual 67 / 133

11.5.3 Promises regeneration

http://localhost/rudder/api/deploy/reload Regenerate promises (same action as the Regenerate now
button).

11.5.4 Dynamic groups regeneration

http://localhost/rudder/api/dyngroup/reload Check all dynamic groups for changes. If changes have oc-
curred, regenerate the groups in the LDAP and the CFEngine promises.

11.5.5 Technique library reload

http://localhost/rudder/api/techniqueLibrary/reload Check the technique library for changes. If changes
have occurred, reload the technique library in memory and regenerate the CFEngine promises.

11.5.6 Archives manipulation

Various methods are available to import and export items:

11.5.6.1 Archiving:

http://localhost/rudder/api/archives/archive/groups Export node groups and node groups categories.

http://localhost/rudder/api/archives/archive/directives Export policy library (categories, active tech-
niques, directives).

http://localhost/rudder/api/archives/archive/rules Export rules

http://localhost/rudder/api/archives/archive/full Export everything

11.5.6.2 Listing:

http://localhost/rudder/api/archives/list/groups List available archives datetime for groups (the date-
time is in the format awaited for restoration).

http://localhost/rudder/api/archives/list/directives List available archives datetime for policy li-
brary (the datetime is in the format awaited for restoration).

http://localhost/rudder/api/archives/list/rules List available archives datetime for configuration rules
(the datetime is in the format awaited for restoration).

http://localhost/rudder/api/archives/list/full List available archives datetime for full archives (the date-
time is in the format awaited for restoration).

11.5.6.3 Restoring a given archive:

http://localhost/rudder/api/archives/restore/groups/datetime/[archiveId] Restore given groups
archive.

http://localhost/rudder/api/archives/restore/directives/datetime/[archiveId] Restore given
directives archive.

http://localhost/rudder/api/archives/restore/rules/datetime/[archiveId] Restore given rules
archive.

http://localhost/rudder/api/archives/restore/full/datetime/[archiveId] Restore everything.

Rudder 2.11 - User Manual 68 / 133

11.5.6.4 Restoring the latest available archive (from a previously archived action, and so from a Git tag):

http://localhost/rudder/api/archives/restore/groups/latestArchive
http://localhost/rudder/api/archives/restore/directives/latestArchive
http://localhost/rudder/api/archives/restore/rules/latestArchive
http://localhost/rudder/api/archives/restore/full/latestArchive

11.5.6.5 Restoring the latest available commit (use Git HEAD):

http://localhost/rudder/api/archives/restore/groups/latestCommit
http://localhost/rudder/api/archives/restore/directives/latestCommit
http://localhost/rudder/api/archives/restore/rules/latestCommit
http://localhost/rudder/api/archives/restore/full/latestCommit

11.5.6.6 Downloading a ZIP archive

The REST API allows to download a ZIP archive of groups, directives and rules (as XML files) for a given Git commit ID (the
commit HASH).

It is not designed to query for available Git commit ID, so you will need to get it directly from a Git tool (for example with Git
log) or from the list API.

Note that that API allows to download ANY Git commit ID as a ZIP archive, not only the one corresponding to Rudder archives.

Note 2: you should rename the resulting file with a ".zip" extension as most zip utilities won’t work correctly on a file not having
it.

http://localhost/rudder/api/archives/zip/groups/[GitCommitId] Download groups for the given Com-
mit ID as a ZIP archive.

http://localhost/rudder/api/archives/zip/directives/[GitCommitId] Download directives for the
given Commit ID as a ZIP archive.

http://localhost/rudder/api/archives/zip/rules/[archiveId] Download rules for the given Commit
ID as a ZIP archive.

http://localhost/rudder/api/archives/zip/full/[archiveId] Download groups, directives and rules
for the given Commit ID as a ZIP archive.

11.6 Relay servers

Relay servers can be added to Rudder, for example to manage a DMZ or to isolate specific nodes from the main environment for
security reasons.

Relay server’s purpose is to solve a simple problem: sometimes, one would want to manage multiple networks from Rudder,
without having to allow all the subnet access to the other for security reasons. A solution for this would be to have a kind of
"Rudder" proxy that would be relaying information between the subnet and the main Rudder server. This is the reason relay
servers were created.

Using a relay, you are able to:

• Separate your Rudder architecture into separate entities that still report to one server

• Prevent laxist security exceptions to the Rudder server

• Ease maintenance

Rudder 2.11 - User Manual 69 / 133

The first part is to be done on the machine that will become a relay server. The procedure will:

• Add the machine as a regular node

• Configure the relay components (Syslog, Apache HTTPd, CFEngine)

• Switch this node to the relay server role (from the root server point of view)

11.6.1 Installation procedure - On the relay

11.6.1.1 Install Rudder agent

To begin, please install a regular Rudder agent on the OS.

See here for the complete reference about agent installation.

To complete this step, please make sure that your node is configured successfully and appears in your Rudder web interface.

11.6.1.2 Install the required dependencies and enable required modules

RHEL-like (RHEL, CentOS, Scientific)
yum install httpd httpd-tools rsyslog
#~All required modules are enabled by default

#~Debian-like (Debian, Ubuntu)
apt-get install apache2 apache2-utils rsyslog
a2enmod dav dav_fs
a2dissite default

#~SuSE
zypper install apache2 apache2-utils rsyslog
a2enmod dav dav_fs

11.6.1.3 Create the necessary directory and adjust the permissions

mkdir -p /opt/rudder/etc /var/log/rudder/apache2 /var/rudder/share

for i in /var/rudder/inventories/incoming /var/rudder/inventories/accepted-nodes-updates
do

mkdir -p ${i}
chmod -R 1770 ${i}
for group in apache www-data www; do

if getent group ${group} > /dev/null; then chown -R root:${group} ${i}; ←↩
break; fi

done
done

for i in /opt/rudder/etc/htpasswd-webdav-initial /opt/rudder/etc/htpasswd-webdav
do

/usr/bin/htpasswd -bc ${i} rudder rudder
done

touch /opt/rudder/etc/rudder-networks.conf

Rudder 2.11 - User Manual 70 / 133

11.6.1.4 Please create the appropriate file for your OS, and copy the following content in it

• /etc/httpd/conf.d/rudder-default.conf file on RHEL-like

• /etc/apache2/sites-enabled/rudder-default file on Debian-like

• /etc/apache2/vhosts.d/rudder-default.conf file on SuSE

<VirtualHost *:80>
ServerAdmin webmaster@localhost
Expose the server UUID through http
Alias /uuid /opt/rudder/etc/uuid.hive
<Directory /opt/rudder/etc>

Order deny,allow
Allow from all

</Directory>
WebDAV share to receive inventories
Alias /inventories /var/rudder/inventories/incoming
<Directory /var/rudder/inventories/incoming>

DAV on
AuthName "WebDAV Storage"
AuthType Basic
AuthUserFile /opt/rudder/etc/htpasswd-webdav-initial
Require valid-user
Order deny,allow
This file is automatically generated according to
the hosts allowed by rudder.
Include /opt/rudder/etc/rudder-networks.conf
<LimitExcept PUT>

Order allow,deny
Deny from all

</LimitExcept>
</Directory>
WebDAV share to receive inventories
Alias /inventory-updates /var/rudder/inventories/accepted-nodes-updates
<Directory /var/rudder/inventories/accepted-nodes-updates>

DAV on
AuthName "WebDAV Storage"
AuthType Basic
AuthUserFile /opt/rudder/etc/htpasswd-webdav
Require valid-user
Order deny,allow
This file is automatically generated according to
the hosts allowed by rudder.
Include /opt/rudder/etc/rudder-networks.conf
<LimitExcept PUT>

Order allow,deny
Deny from all

</LimitExcept>
</Directory>
Logs
ErrorLog /var/log/rudder/apache2/error.log
LogLevel warn
CustomLog /var/log/rudder/apache2/access.log combined

</VirtualHost>

Finally, restart Apache to take these changes into account:

RHEL-like (RHEL, CentOS, Scientific)
service httpd restart

Rudder 2.11 - User Manual 71 / 133

#~Debian-like (Debian, Ubuntu) and SuSE
service apache2 restart

11.6.2 Installation procedure - On the root server

11.6.2.1 Set the node as a Rudder relay

Launch the rudder-node-to-relay script on the root server, supplying the UUID of the host to be added as a relay to it:

/opt/rudder/bin/rudder-node-to-relay aaaaaaaa-bbbb-cccc-dddd-eeeeeeee

11.6.3 Result

When every step has completed successfully:

• The Rudder root server will recognize the new node as a relay

• It will generate specific promises for the relay

• The relay will update and switch to his new role

This is an example of node details pane showing a relay server. Note the "Role: Rudder relay server" part that shows that the
machine has successfully changed from a node to a relay.

Figure 11.2: Rudder relay node

Rudder 2.11 - User Manual 72 / 133

11.6.4 Adding nodes to a relay server

When you have at least one relay, you will likely want to add nodes on it.

You then have two possible cases:

• You want to switch an already existing node to the relay

• You want to add a new one

The procedure on both cases is the same, you have to:

• Create / update the file /var/rudder/cfengine-community/policy_server.dat with the IP address or the fully qualified domain
name of the relay server (instead of the root server)

echo "rudder-relay.example.com" > /var/rudder/cfengine-community/policy_server.dat

• Trigger an inventory immediately to make sure the node is registered correctly

/var/rudder/cfengine-community/bin/cf-agent -KI -D force_inventory

After those steps, the node should be registered correctly on your Rudder infrastructure.

11.7 Multiserver Rudder

From version 2.11 Rudder can be divided into 4 different components :

• rudder-web : an instance with the webapp and the central policy server

• rudder-ldap : the inventory endpoint and its ldap backend

• rudder-db : the postgresql storage

• rudder-relay-top : the contact point for nodes

11.7.1 Preliminary steps

You need the setup scripts provided at https://github.com/normation/rudder-tools/tree/master/scripts/rudder-multiserver-setup .
You can download them with this command:

mkdir rudder-multiserver-setup
cd rudder-multiserver-setup
for i in add_repo detect_os.sh rudder-db.sh rudder-ldap.sh rudder-relay-top.sh rudder-web. ←↩

sh
do

wget --no-check-certificate https://raw.githubusercontent.com/Normation/rudder-tools/ ←↩
master/scripts/rudder-multiserver-setup/$i

done
chmod 755 *
cd ..

You need 4 instances of supported OS, one for each component. Only the rudder-web instance need at least 2GB of RAM.

Register the 4 names in the DNS or add them in /etc/hosts on each instance.

Add firewall rules :

https://github.com/normation/rudder-tools/tree/master/scripts/rudder-multiserver-setup

Rudder 2.11 - User Manual 73 / 133

• from rudder-web to rudder-db port pgsql TCP

• from rudder-* to rudder-web port rsyslog 514 TCP

• from rudder-relay-top to rudder-ldap port 8080 TCP

• from rudder-web to rudder-ldap port 8080 TCP

• from rudder-web to rudder-ldap port 389 TCP

• from rudder-web to rudder-relay-top port 5309

11.7.2 Install rudder-relay-top

Copy the rudder-multiserver-setup directory to you instance.

Run rudder-relay-top.sh as root, replace <rudder-web> with the hostname of the rudder-web instance:

cd rudder-multiserver-setup
./rudder-relay-top.sh <rudder-web>

Take note of the UUID. If you need it later read, it is in the file /opt/rudder/etc/uuid.hive

11.7.3 Install rudder-db

Copy the rudder-multiserver-setup directory to you instance.

Run rudder-db.sh as root, replace <rudder-web> with the hostname of the rudder-web instance, replace <allowed-network> with
the network containing the rudder-web instances:

cd rudder-multiserver-setup
./rudder-db.sh <rudder-web> <allowed-network>

11.7.4 Install rudder-ldap

Copy the rudder-multiserver-setup directory to you instance.

Run rudder-ldap.sh as root, replace <rudder-web> with the hostname of the rudder-web instance:

cd rudder-multiserver-setup
./rudder-ldap.sh <rudder-web>

11.7.5 Install rudder-web

Copy the rudder-multiserver-setup directory to you instance.

Run rudder-relay-top.sh as root, replace <rudder-*> with the hostname of the corresponding instance:

cd rudder-multiserver-setup
./rudder-web.sh <rudder-web> <rudder-ldap> <rudder-db> <rudder-relay-top>

Connect rudder web interface and accept all nodes. Then run the following command where <relay-uuid> is the uuid from
rudder-relay-top setup.

/opt/rudder/bin/rudder-node-to-relay <relay-uuid>

Rudder 2.11 - User Manual 74 / 133

11.8 Server migration

11.8.1 What files you need

To copy a server on a new location, you need at least to keep the configuration applied by your server.

You need to keep :

• Rules

• Directives

• Groups

• Techniques

If you keep your actual nodes, you also have to handle with CFEngine keys. New nodes won’t have problems with the new
server.

If your new server has a different IP, you will have to change it on your nodes.

You will have to accept nodes

There are multiple ways to migrate your server, here are the best we propose you.

11.8.2 Handle configuration files

11.8.2.1 Copy /var/rudder/configuration-repository

The simplest way to migrate your server to a new one is to copy /var/rudder/configuration-repository from your former server to
the new one. In this folder you will find all your Rules/Groups/Directives/Techniques are stored. By copying that folder you will
keep the git tree used by your server and keep your comments.

• Copy /var/rudder/configuration-repository to your new server

• In Rudder UI Go to Administration > Policy Server

• Reload the Technique Library

• Go to Administration > Archives

• In Global Archive, "Choose an archive" select Latest git commit

• Click on Restore everything

• After deployment, your configuration should be restored

11.8.2.2 Use Archive feature of Rudder

Alternatively, you can follow the Archive/Import procedures described in Archives

11.8.3 Handle CFEngine keys

11.8.3.1 Keep your CFEngine keys

Copy /var/rudder/cfengine-community/ppkeys to your new server

Rudder 2.11 - User Manual 75 / 133

11.8.3.2 Change CFEngine keys

On every node that were using your old rudder server, you will have to erase the server public key (root-MD5=*.pub file)

Run rm /var/rudder/cfengine-community/ppkeys/root-MD5=*.pub

On the next run of rudder-agent, nodes will get the new public key of the server

11.8.4 On your nodes

If your server has changed of IP address you have to modify /var/rudder/cfengine-community/policy_server.
dat with the new address

Then you force your nodes to send their inventory while running /var/rudder/cfengine-community/bin/cf-age
nt -KI -D force_inventory

In your Rudder UI, you should now be able to accept the nodes.

Your configuration is now totally migrated.

11.9 Mirroring Rudder repositories

You can also use your own packages repositories server instead of www.rudder-project.org if you want. This is possible with a
synchronization from our repositories with rsync.

We’ve got public read only rsync modules rudder-apt and rudder-rpm.

To synchronize with the APT repository just type:

rsync -av www.rudder-project.org::rudder-apt /your/local/mirror

To synchronize with the RPM repository just type:

rsync -av www.rudder-project.org::rudder-rpm /your/local/mirror

Finally, you have to set up these directories (/your/local/mirror) to be shared by HTTP by a web server (i.e., Apache, nginx,
lighttpd, etc. . .).

Rudder 2.11 - User Manual 76 / 133

Chapter 12

Handbook

This chapter contains some tips and tricks you might want to know about using Rudder in a production environment, with some
useful optimization and procedures.

12.1 Database maintenance

Rudder uses two backends to store information as of now: LDAP and SQL

To achieve this, OpenLDAP and PostgreSQL are installed with Rudder.

However, like every database, they require a small amount of maintenance to keep operating well. Thus, this chapter will
introduce you to the basic maintenance procedure you might want to know about these particular database implementations.

12.1.1 Automatic PostgreSQL table maintenance

Rudder uses an automatic mechanism to automate the archival and pruning of the reports database.

By default, this system will:

• Archive reports older that 3 days (30 in Rudder 2.6)

• Remove reports older than 90 days

It thus reduces the work overhead by only making Rudder handle relevant reports (fresh enough) and putting aside old ones.

This is obviously configurable in /opt/rudder/etc/rudder-web.properties, by altering the following configuration elements:

• rudder.batch.reportscleaner.archive.TTL: Set the maximum report age before archival

• rudder.batch.reportscleaner.delete.TTL: Set the maximum report age before deletion

The default values are OK for systems under moderate load, and should be adjusted in case of excessive database bloating.

The estimated disk space consumption, with a 5 minute agent run frequency, is 150 to 400 kB per Directive, per day and per
node, which is roughly 5 to 10 MB per Directive per month and per node.

Thus, 25 directives on 100 nodes, with a 7 day log retention policy, would take 2.5 to 10 GB, and 25 directives on 1000 nodes
with a 1 hour agent execution period and a 30 day log retention policy would take 9 to 35 GB.

Rudder 2.11 - User Manual 77 / 133

12.1.2 PostgreSQL database vacuum

In some cases, like a large report archiving or deletion, the Rudder interface will still display the old database size. This is
because even if the database has been cleaned as requested, the physical storage backend did not reclaim space on the hard drive,
resulting in a "fragmented" database. This is not an issue, as PostgreSQL handles this automatically, and new reports sent by
the nodes to Rudder will fill the blanks in the database, resulting in a steady growth of the database. This task is handled by the
autovacuum process, which periodically cleans the storage regularly to prevent database bloating.

However, to force this operation to free storage immediately, you can trigger a "vacuum full" operation by yourself, however
keep in mind that this operation is very disk and memory intensive, and will lock both the Rudder interface and the reporting
system for quite a long time with a big database.

Manual vacuuming using the psql binary

#~You can either use sudo to change owner to the postgres user, or use the rudder ←↩
connection credentials.

#~With sudo:
sudo -u postgres psql -d rudder

#~With rudder credentials, it will ask the password in this case:
psql -u rudder -d rudder -W

And then, when you are connected to the rudder database in the psql shell, trigger a ←↩
vacuum:

rudder=# VACUUM FULL;

And take a coffee.

12.1.3 LDAP database reindexing

In some very rare case, you will encounter some LDAP database entries that are not indexed and used during searches. In that
case, OpenLDAP will output warnings to notify you that they should be.

LDAP database reindexing

Stop OpenLDAP
/etc/init.d/rudder-slapd stop

Reindex the databases
/opt/rudder/sbin/slapindex

Restart OpenLDAP
/etc/init.d/rudder-slapd restart

12.2 Migration, backups and restores

It is advised to backup frequently your Rudder installation in case of a major outage.

These procedures will explain how to backup your Rudder installation.

12.2.1 Backup

This backup procedure will operate on the three principal Rudder data sources:

• The LDAP database

Rudder 2.11 - User Manual 78 / 133

• The PostgreSQL database

• The configuration-repository folder

It will also backup the application logs.

How to backup a Rudder installation

#~First, backup the LDAP database:
/opt/rudder/sbin/slapcat -l /tmp/rudder-backup-$(date +%Y%m%d).ldif

Second, the PostgreSQL database:
sudo -u postgres pg_dump rudder > /tmp/rudder-backup-$(date +%Y%m%d).sql

#~Or without sudo, use the rudder application password:
pg_dump -U rudder rudder > /tmp/rudder-backup-$(date +%Y%m%d).sql

#~Third, backup the configuration repository:
tar -C /var/rudder -zvcf /tmp/rudder-backup-$(date +%Y%m%d).tar.gz configuration-repository ←↩

/ cfengine-community/ppkeys/

Finally, backup the logs:
tar -C /var/log -zvcf /tmp/rudder-log-backup-$(date +%Y%m%d).tar.gz rudder/

#~And put the backups wherever you want, here /root:
cp /tmp/rudder-backup* /root
cp /tmp/rudder-log-backup* /root

12.2.2 Restore

Of course, after a total machine crash, you will have your backups at hand, but what should you do with it ?

Here is the restoration procedure:

How to restore a Rudder backup

First, follow the standard installation procedure, this one assumes you have a working " ←↩
blank"

Rudder on the machine

Stop Rudder
/etc/init.d/rudder-server-root stop

Drop the OpenLDAP database
rm -rf /var/rudder/ldap/openldap-data/alock /var/rudder/ldap/openldap-data/*.bdb /var/ ←↩

rudder/ldap/openldap-data/__db* /var/rudder/ldap/openldap-data/log*

Import your backups

#~Configuration repository
tar -C /var/rudder -zvxf /root/rudder-backup-XXXXXXXX.tar.gz

#~LDAP backup
/opt/rudder/sbin/slapadd -l /root/rudder-backup-XXXXXXXX.ldif

#~PostgreSQL backup
sudo -u postgres psql -d rudder < /root/rudder-backup-XXXXXXXX.sql
#~or
psql -u rudder -d rudder -W < /root/rudder-backup-XXXXXXXX.sql

#~And restart the machine or just Rudder:
/etc/init.d/rudder-server-root restart

Rudder 2.11 - User Manual 79 / 133

12.2.3 Migration

To migrate a Rudder installation, just backup and restore your Rudder installation from one machine to another.

Please remember that The CFEngine key restoration is mandatory for the clients to update properly, but if the Rudder server
address changes, the agents will block. You have to delete every root-*.pub key in /var/rudder/cfengine-community/ppkeys/ for
things to work again.

12.3 Performance tuning

Rudder and some applications used by Rudder (like the Apache web server, or Jetty) can be tuned to your needs.

12.3.1 Reports retention

To lower Rudder server’s disk usage, you can configure the retention duration for node’s execution reports in /opt/rudder/
etc/rudder-web.properties file with the options:

rudder.batch.reportscleaner.archive.TTL=30

rudder.batch.reportscleaner.delete.TTL=90

12.3.2 Apache HTTPd

The apache HTTPd is used by Rudder as a proxying server, to connect to the Jetty application server.

But it is also widely used as a regular HTTP serving application. You are heavily advised if interested to read the tons of
documentation about it in your Linux distribution website, to learn about what it can do.

12.3.3 Jetty

The Jetty 7 (Hightide) application server is the main application that runs the Rudder code. It is based on the Java programming
language.

About the latter, there is some configuration switches that you might want to tune to obtain better performance with Rudder,
in /opt/rudder/etc/rudder-jetty.conf, whereas the default ones fit the basic recommendations for the minimal Rudder hardware
requirements.

• JAVA_XMX : That parameter tune the total amount of RAM usable / dedicated to the java process. It is what you want to tune
at first to give Rudder some more RAM.

• JAVA_MAXPERMSIZE: That parameter is acceptable for most installations, but you might want to decrease them a bit if
using a machine that is not very powerful / RAM abundant. Increasing them is not really useful.

12.3.4 Java "Out Of Memory Error"

It may happen that you get java.lang.OutOfMemoryError. They can be of several types, but the most common is: "java.lang.OutOfMemoryError:
Java heap space".

This error means that the web application needs more RAM than what was given. It may be linked to a bug where some process
consumed much more memory than needed, but most of the time, it simply means that your system has grown and needs more
memory.

You can follow the configuration steps described in the following paragraph.

Rudder 2.11 - User Manual 80 / 133

12.3.5 Configure RAM allocated to Jetty

To change the RAM given to Jetty, you have to:

edit /opt/rudder/etc/rudder-jetty.conf with your preferred text editor, for example vim:
vim /opt/rudder/etc/rudder-jetty.conf

modify JAVA_XMX to set the value to your need.
The value is given in MB by default, but you can also use the "G" unit to specify a size ←↩

in GB.

JAVA_XMX=2G

save your changes, and restart Jetty:
service restart rudder-jetty

The amount of memory should be the half of the RAM of the server, rounded down to the nearest GB. For example, if the server
has 5GB of RAM, 2GB should be used.

12.3.6 Optimize PostgreSQL server

The default out-of-the-box configuration of PostgreSQL server is really not compliant for high end (or normal) servers. It uses a
really small amount of memory.

The location of the PostgreSQL server configuration file is usually:

/etc/postgresql/9.x/main/postgresql.conf

On a SuSE system:

/var/lib/pgsql/data/postgresql.conf

12.3.6.1 Suggested values on an high end server

#
Amount of System V shared memory

#
A reasonable starting value for shared_buffers is 1/4 of the memory in your
system:

shared_buffers = 1GB

You may need to set the proper amount of shared memory on the system.
#
$ sysctl -w kernel.shmmax=1073741824
#
Reference:
http://www.postgresql.org/docs/8.4/interactive/kernel-resources.html#SYSVIPC
#
Memory for complex operations

#
Complex query:

work_mem = 24MB
max_stack_depth = 4MB

Complex maintenance: index, vacuum:

Rudder 2.11 - User Manual 81 / 133

maintenance_work_mem = 240MB

Write ahead log

#
Size of the write ahead log:

wal_buffers = 4MB

Query planner

#
Gives hint to the query planner about the size of disk cache.
#
Setting effective_cache_size to 1/2 of total memory would be a normal
conservative setting:

effective_cache_size = 1024MB

12.3.6.2 Suggested values on a low end server

shared_buffers = 128MB
work_mem = 8MB
max_stack_depth = 3MB
maintenance_work_mem = 64MB
wal_buffers = 1MB
effective_cache_size = 128MB

12.3.7 CFEngine

If you are using Rudder on a highly stressed machine, which has especially slow or busy I/O’s, you might experience a sluggish
CFEngine agent run everytime the machine tries to comply with your Rules.

This is because the CFEngine agent tries to update its class database everytime the agent executes a promise (the cf-lock.db file
in the /var/rudder/cfengine-community/state directory), which even if the database is very light, takes some time if the machine
has a very high iowait value.

In this case, here is a workaround you can use to restore CFEngine’s full speed: you can use a RAMdisk to store CFEngine
states.

You might use this solution either temporarily, to examine a slowness problem, or permanently, to mitigate a known I/O problem
on a specific machine. We do not recommend as of now to use this on a whole IT infrastructure.

Be warned, this solution has only one drawback: you should backup and restore the content of this directory manually in case
of a machine reboot because all the persistent states are stored here, so in case you are using, for example the jobScheduler
Technique, you might encounter an unwanted job execution because CFEngine will have "forgotten" the job state.

Also, note that the mode=0700 is important as CFEngine will refuse to run correctly if the state directory is world readable, with
an error like:

error: UNTRUSTED: State directory /var/rudder/cfengine-community (mode 770) was not private ←↩
!

Here is the command line to use:

How to mount a RAMdisk on CFEngine state directory

Rudder 2.11 - User Manual 82 / 133

How to mount the RAMdisk manually, for a "one shot" test:
mount -t tmpfs -o size=128M,nr_inodes=2k,mode=0700,noexec,nosuid,noatime,nodiratime tmpfs / ←↩

var/rudder/cfengine-community/state

How to put this entry in the fstab, to make the modification permanent
echo "tmpfs /var/rudder/cfengine-community/state tmpfs defaults,size=128M,nr_inodes=2k,mode ←↩

=0700,noexec,nosuid,noatime,nodiratime 0 0" >> /etc/fstab
mount /var/rudder/cfengine-community/state

12.3.8 Rsyslog

On Rudder policy servers (root or relay), when managing a large number of nodes, you can experience issues with rsyslog. This
happens because Rudder uses TCP by default for sending reports to rsyslog, which implies the system has to keep track of the
connections. It can lead to reach some limits, especially:

• max number of open files for the user running rsyslog

• size of network backlogs

• size of the conntrack table

All settings needing to modify /etc/sysctl.conf require to run sysctl -p to be applied.

12.3.8.1 Maximum number of file descriptors

If you plan to manage hundreds of Nodes behind a relay or a root server, you should increase the open file limit (10k is a good
starting point, you might have to get to 100k with thousands of Nodes).

You can change the system-wide maximum number of file descriptors in /etc/sysctl.conf if necessary:

fs.file-max = 100000

Then you have to get the user running rsyslog enough file descriptors. To do so, you have to:

• Have a high enough hard limit for rsyslog

• Set the limit used by rsyslog

The first one can be set in /etc/security/limits.conf :

username hard nofile 8192

For the second one, you have two options:

• Set the soft limit (which will be used by default) in /etc/security/limits.conf (with username soft nofile 8192)

• If you want to avoid changing soft limit (particularly if rsyslog is running as root), you can configure rsyslog to change its limit
to a higher value (but not higher than the hard limit) with the $MaxOpenFiles configuration directive in /etc/rsyslog.conf

You have to restart rsyslog for these settings to take effect.

You can check current soft and hard limits by running the following commands as the user you want to check:

$ ulimit -Sn
$ ulimit -Hn

Rudder 2.11 - User Manual 83 / 133

12.3.8.2 Network backlog

You can also have issues with the network queues (which may for example lead to sending SYN cookies):

• You can increase the maximum number of connection requests awaiting acknowledgment by changing net.ipv4.tcp_max_syn_backlog
= 4096 (for example, the default is 1024) in /etc/sysctl.conf.

• You may also have to increase the socket listen() backlog in case of bursts, by changing net.core.somaxconn = 1024 (for
example, default is 128) in /etc/sysctl.conf.

12.3.8.3 Conntrack table

You may reach the size of the conntrack table, especially if you have other applications running on the same server. You can
increase its size in /etc/sysctl.conf, see the Netfilter FAQ for details.

http://www.netfilter.org/documentation/FAQ/netfilter-faq.html#toc3.7

Rudder 2.11 - User Manual 84 / 133

Chapter 13

Troubleshooting and common issues

This chapter covers common issues and the available solutions.

13.1 Some reports are in "No Answer"

13.1.1 If you get no reports at all for the Node

First thing to check is to see if reports were received by Rudder server.

Check the last report time (called Last seen) in List Nodes page. If you see:

• Never: your Node is misconfigured or has a communication issue with the server

• A date far (more than 15 minutes) from current time: Synchronize server and node time

• A recent date: check if the node has correctly updated

Now we will check if promises were updated on the Node. Maybe the node could not update its promises anymore, even if the
reporting looks ok and Rules seems to be applied but report keeps in ‘No Answer’.

To check if a node can update its promises, run (one the node) /var/rudder/cfengine-community/bin/cf-agent -KI | grep Up-
date@@None You’ll get the result of the ‘Update‘ component in the execution. The message at the end of the line will tell you if
the update succeed of fail: R: @@Common@@result_error@@hasPolicyServer-root@@common-root@@00@@Update@@None@@2014-
01-07 07:40:45-02:00##dda3cba8-f6ca-4766-a3cb-09d61f53f6c5@#Cannot update node’s policy or dependencies

To update its promises, a Node needs to get a directory on Rudder server (/var/rudder/share/node_uuid), and Rudder checks if
the node is authorized to access that directory. This check is based on the capability to resolve the ip as an accepted node. So if
your node can’t update its promises, it’s probably because of a DNS issue!

13.1.2 If you get incomplete reporting for the Node

Some executions may be truncated, leading to incomplete reports. Rudder executions start with a StartRun report and ends with
an EndRun. If the execution is incomplete and the EndRun never sent some reports will be missing. reasons could be:

• the execution of the agent encountered an error during its execution and could not complete, please report a bug

• the agent is executed to launch specific bundles

• reporting is missing on a Technique, in this case report a bug

http://www.rudder-project.org/redmine/projects/rudder/issues/new
http://www.rudder-project.org/redmine/projects/rudder/issues/new

Rudder 2.11 - User Manual 85 / 133

13.2 Communication issues between agent and server

13.2.1 DNS issues

If one of the following problems happen:

• the agent does not manage to get its configuration back from the server with weird errors

• the server complains about being unable to resolve the node hostname

• when starting or restarting Rudder (or rudder-agent) service, cf-serverd start hangs

You probably have a name resolution problem. Please keep in mind that Rudder needs a working name resolution environment
to operate properly, and therefore every machine should be at least able to resolve the name of their peer.

You have two options:

• Fix your DNS server or the /etc/hosts on both the server and the node, so they can resolve each other (you can check
using nslookup). You need to restart rudder-agent on the server to apply it

• Disable hostname checking on the server in Administration→ Settings→ Use reverse DNS lookups on nodes to reinforce
authentication to policy server. This is the preferred solution if you have nodes behind a NAT.

13.2.2 Inventory issues

If you cannot send inventories to the server, it may be because of a proxy configured in /etc/profile or shell configuration. Rudder
agents use cURL to send inventories to their server, and the server actually uses it too to send received inventories to the inventory
web application. There are two solutions usable to prevent this problem:

• Disable the proxy temporarily in your shell session, so Rudder can operate freely:

unset http_proxy; unset https_proxy; unset ftp_proxy; unset ftps_proxy; unset HTTP_PROXY; ←↩
unset HTTPS_PROXY; unset FTP_PROXY; unset FTPS_PROXY

• If you are using the Squid proxy, you are in luck, as the workaround might simply be to add this entry to your /etc/squid/squid.conf :
ignore_expect_100 on, it will make Squid more tolerant to programs like cURL than send some terse http requests. (Thanks to
Albaro A. for this tip!)

13.3 Technique editing

If you have committed an invalid technique, then fixed it and commited it again, but the webapp still doesn’t start, you have to
force Technique library reloading.

To do this, deleting the attribute techniqueLibraryVersion from entry techniqueCategoryId=Active Techniques,ou=Rudder,cn=rudder-
configuration in your Rudder LDAP backend. When re-starting, the webapp should now reload latest techniques.

13.4 Database is using too much space

Rudder stores a lot of data in the Postgresql database, and most historical data is removed from it. You can configure how many
days of logs you want to keep in the database. However, due to the nature of Postgresql, when data are removed, space is not
reclaimed on the storage system, it is simply marked as “free” for the database to write again in the removed rows. This space
can be reclaimed by a VACUUM FULL, but it needs at least as much free space on the drive as the database size. Moreover, if

Rudder 2.11 - User Manual 86 / 133

you are using Postgresql 8.3 (or in a lesser extend 8.4), you’ll be likely to experience indexes bloating, where the physical size
of the indexes grows without real reason, and need to be regularly purged.

There are two ways to reclaim space, the fast one (which doesn’t reclaim completely all wasted space), and the complete one
(which is unfortunately very slow)

Fast solution (especially for 8.x version of postgresql): Simply reindexing the database will save some space; depending on the
size of your database, it may take several minutes to a couple of hours

First, stop the Rudder server
touch /opt/rudder/etc/disable-agent
/etc/init.d/rudder-jetty stop

Then log into postgresql
psql -U rudder -h localhost
REINDEX TABLE ruddersysevents;

#Exit postgresql
\q

Restart the Rudder server
rm /opt/rudder/etc/disable-agent
/etc/init.d/rudder-jetty start

Complete solution: this solution will reclaim all that can be reclaimed, but is really really slow (can last several hours)

First, stop the Rudder server
touch /opt/rudder/etc/disable-agent
/etc/init.d/rudder-jetty stop

Then log into postgresql
psql -U rudder -h localhost
drop index component_idx;
drop index composite_node_execution_idx;
drop index keyvalue_idx;
drop index nodeid_idx;
drop index ruleid_idx;
drop index executiontimestamp_idx;
vacuum full ruddersysevents; -- this will take several hours

create index nodeid_idx on RudderSysEvents (nodeId);
CREATE INDEX executionTimeStamp_idx on RudderSysEvents (executionTimeStamp);
CREATE INDEX composite_node_execution_idx on RudderSysEvents (nodeId, executionTimeStamp);
CREATE INDEX component_idx on RudderSysEvents (component);
CREATE INDEX keyValue_idx on RudderSysEvents (keyValue);
CREATE INDEX ruleId_idx on RudderSysEvents (ruleId);

Exit postgresql
\q

Restart the Rudder server
rm /opt/rudder/etc/disable-agent
/etc/init.d/rudder-jetty start

Rudder 2.11 - User Manual 87 / 133

Chapter 14

Reference

This chapter contains the reference Rudder configuration files

14.1 Rudder Server data workflow

To have a better understanding of the Archive feature of Rudder, a description of the data workflow can be useful.

All the logic of Rudder Techniques is stored on the filesystem in /var/rudder/configuration-repository/techn
iques. The files are under version control, using git. The tree is organized as following :

1. At the first level, techniques are classified in categories: applications, fileConfiguration, fileDistribution, jobScheduling,
system, systemSettings. The description of the category is included in category.xml.

2. At the second and third level, Technique identifier and version.

3. At the last level, each technique is described with a metadata.xml file and one or several CFEngine template files
(name ending with .st).

An extract of Rudder Techniques filesystem tree

+-- techniques
| +-- applications
| | +-- apacheServer
| | | +-- 1.0
| | | +-- apacheServerConfiguration.st
| | | +-- apacheServerInstall.st
| | | +-- metadata.xml
| | +-- aptPackageInstallation
| | | +-- 1.0
| | | +-- aptPackageInstallation.st
| | | +-- metadata.xml
| | +-- aptPackageManagerSettings
| | | +-- 1.0
| | | +-- aptPackageManagerSettings.st
| | | +-- metadata.xml
| | +-- category.xml
| | +-- openvpnClient
| | | +-- 1.0
| | | +-- metadata.xml
| | | +-- openvpnClientConfiguration.st
| | | +-- openvpnInstall.st

Rudder 2.11 - User Manual 88 / 133

At Rudder Server startup, or after the user has requested a reload of the Rudder Techniques, each metadata.xml is mapped
in memory, and used to create the LDAP subtree of Active Techniques. The LDAP tree contains also a set of subtrees for Node
Groups, Rules and Node Configurations.

At each change of the Node Configurations, Rudder Server creates CFEngine draft policies (Cf3PolicyDraft) that are stored
in memory, and then invokes cf-clerk. cf-clerk finally generates the CFEngine promises for the Nodes.

Rudder 2.11 - User Manual 89 / 133

Figure 14.1: Rudder data workflow

Rudder 2.11 - User Manual 90 / 133

14.2 Rudder Agent workflow

In this chapter, we will have a more detailed view of the Rudder Agent workflow. What files and processes are created or modified
at the installation of the Rudder Agent? What is happening when a new Node is created? What are the recurrent tasks performed
by the Rudder Agent? How does the Rudder Server handle the requests coming from the Rudder Agent? The Rudder Agent
workflow schema summarizes the process that will be described in the next pages.

Rudder 2.11 - User Manual 91 / 133

Figure 14.2: Rudder Agent workflow

Let’s consider the Rudder Agent is installed and configured on the new Node.

The Rudder Agent is regularly launched and performs following tasks sequentially, in this order:

Rudder 2.11 - User Manual 92 / 133

14.2.1 Request data from Rudder Server

The first action of Rudder Agent is to fetch the tools directory from Rudder Server. This directory is located at /opt/
rudder/share/tools on the Rudder Server and at /var/rudder/tools on the Node. If this directory is already
present, only changes will be updated.

The agent then try to fetch new Applied Policies from Rudder Server. Only requests from valid Nodes will be accepted. At first
run and until the Node has been validated in Rudder, this step fails.

14.2.2 Launch processes

Ensure that the CFEngine community daemons cf-execd and cf-serverd are running. Try to start these daemons if they
are not already started.

Daily between 5:00 and 5:05, relaunch the CFEngine Community daemons cf-execd and cf-serverd.

Add a line in /etc/crontab to launch cf-execd if it’s not running.

Ensure again that the CFEngine community daemons cf-execd and cf-serverd are running. Try to start these daemons if
they are not already started.

14.2.3 Identify Rudder Root Server

Ensure the curl package is installed. Install the package if it’s not present.

Get the identifier of the Rudder Root Server, necessary to generate reports. The URL of the identifier is http://Rudder_root_server/uuid

14.2.4 Inventory

If no inventory has been sent since 8 hours, or if a forced inventory has been requested (class force_inventory is defined),
do and send an inventory to the server.

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI -Dforce_inventory

No reports are generated until the Node has been validated in Rudder Server.

14.2.5 Syslog

After validation of the Node, the system log service of the Node is configured to send reports regularly to the server. Supported
system log providers are: syslogd, rsyslogd and syslog-ng.

14.2.6 Apply Directives

Apply other policies and write reports locally.

14.3 Configuration files for a Node

/etc/default/rudder-agent

#==
Configuration sample for Cfengine Community init script
#==

Cfengine Community directory and files
CFENGINE_COMMUNITY_PATH="/opt/rudder"

Rudder 2.11 - User Manual 93 / 133

CFENGINE_COMMUNITY_VAR_PATH="/var/rudder/cfengine-community"
CFENGINE_COMMUNITY_RUN[CFEXECD]="1"
CFENGINE_COMMUNITY_RUN[CFSERVERD]="1"
CFENGINE_COMMUNITY_RUN[CFMONITORD]="0"
CFENGINE_COMMUNITY_BIN[CFEXECD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-execd"
CFENGINE_COMMUNITY_BIN[CFSERVERD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-serverd"
CFENGINE_COMMUNITY_BIN[CFMONITORD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-monitord"
CFENGINE_COMMUNITY_PARAMS[CFEXECD]=""
CFENGINE_COMMUNITY_PARAMS[CFSERVERD]=""
CFENGINE_COMMUNITY_PARAMS[CFMONITORD]=""
CFENGINE_COMMUNITY_PID_FILE[CFEXECD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-execd.pid"
CFENGINE_COMMUNITY_PID_FILE[CFSERVERD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-serverd.pid"
CFENGINE_COMMUNITY_PID_FILE[CFMONITORD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-monitord.pid"

Other
TIMEOUT="60" # Max time to start/stop processes
SYSLOG_FACILITY="local6"
PS_COMMAND="ps -efww" # This ensures full width for ps output but doesn’t work on Solaris ←↩

- use "ps -ef"

14.4 Packages organization

14.4.1 Packages

Rudder components are distributed as a set of packages.

Rudder 2.11 - User Manual 94 / 133

Figure 14.3: Rudder packages and their dependencies

rudder-webapp Package for the Rudder Web Application. It is the graphical interface for Rudder.

rudder-inventory-endpoint Package for the inventory reception service. It has no graphical interface. This service is
using HTTP as transport protocol. It receives an parses the files sent by FusionInventory and insert the valuable data into
the LDAP database.

rudder-jetty Application server for rudder-webapp and rudder-inventory-endpoint. Both packages are
written in Scala. At compilation time, they are converted into .war files. They need to be run in an application server.
Jetty is this application server. It depends on a compatible Java Runtime Environment. It can be either Oracle Java JRE or
OpenJDK 7 JRE.

rudder-techniques Package for the Techniques. They are installed in /opt/rudder/share/techniques. At run-
time, the Techniques are copied into a git repository in /var/rudder/configuration-repository. Therefore,
the package depends on the git package.

rudder-inventory-ldap Package for the database containing the inventory and configuration information for each pend-
ing and validated Node. This LDAP database is build upon OpenLDAP server. The OpenLDAP engine is contained in the
package.

rudder-reports Package for the database containing the logs sent by each Node and the reports computed by Rudder.
This is a PostgreSQL database using the PostgreSQL engine of the distribution. The package has a dependency on the
postgresl package, creates the database named rudder and installs the inialisation scripts for that database in /opt/
rudder/etc/postgresql/*.sql.

Rudder 2.11 - User Manual 95 / 133

rudder-server-root Package to ease installation of all Rudder services. This package depends on all above packages. It
also

• installs the Rudder configuration script:

/opt/rudder/bin/rudder-init

• installs the initial promises for the Root Server in:

/opt/rudder/share/initial-promises/

• installs the init scripts (and associated default file):

/etc/init.d/rudder-server-root

• installs the logrotate configuration:

/etc/logrotate.d/rudder-server-root

rudder-agent One single package integrates everything needed for the Rudder Agent. It contains CFEngine Commmunity,
FusionInventory, and the initial promises for a Node. It also contains an init script:

/etc/init.d/rudder-agent

The rudder-agent package depends on a few common libraries and utilities:

• OpenSSL

• libpcre

• libdb (4.6 on Debian)

• uuidgen (utility from uuid-runtime package on Debian)

14.4.2 Software dependencies and third party components

The Rudder Web application requires the installation of Apache 2 httpd, Oracle Java 6 JRE or OpenJDK 7 JRE, and cURL; the
LDAP Inventory service needs rsyslog and the report service requires PostgreSQL.

When available, packages from your distribution are used. These packages are:

Apache The Apache Web server is used as a proxy to give HTTP access to the Web Application. It is also used to give writable
WebDAV access for the inventory. The Nodes send their inventory to the WebDAV service, the inventory is stored in /
var/rudder/inventories/incoming.

PostgreSQL The PostgreSQL database is used to store logs sent by the Nodes and reports generated by Rudder.

rsyslog and rsyslog-pgsql The rsyslog server is receiving the logs from the nodes and insert them into a PostgreSQL database.
On SLES, the rsyslog-pgsql package is not part of the distribution, it can be downloaded alongside Rudder packages.

Oracle Java JRE or OpenJDK 7 JRE The Java runtime is needed by the Jetty application server. On Debian, the package
from the distribution is used. On SLES, the package must be downloaded from Oracle website.

curl This package is used to send inventory files from /var/rudder/inventories/incoming to the Rudder Endpoint.

git The running Techniques Library is maintained as a git repository in /var/rudder/configuration-repository/
techniques. It can be useful to have git installed on the system for maintenance purpose.

Rudder 2.11 - User Manual 96 / 133

14.5 Configuration files for Rudder Server

/opt/rudder/etc/htpasswd-webdav

rudder:vHBLbrOyfEWFg

/opt/rudder/etc/inventory-web.properties

##
Default configuration file for the application.
You can define the location of this file by
setting "inventoryweb.configFile" JVM property,
for example:
java -Dinventoryweb.configFile=/opt/rudder/etc/inventory-web.conf
##

#
LDAP related configuration
#

LDAP directory connection information
ldap.host=localhost
ldap.port=389
ldap.authdn=cn=Manager,cn=rudder-configuration
ldap.authpw=secret

inventories information
ldap.inventories.software.basedn=ou=Inventories,cn=rudder-configuration
ldap.inventories.accepted.basedn=ou=Accepted Inventories,ou=Inventories,cn=rudder- ←↩

configuration
ldap.inventories.pending.basedn=ou=Pending Inventories,ou=Inventories,cn=rudder- ←↩

configuration

where to store LDIF inventory versions
history.inventories.rootdir=/var/rudder/inventories/historical

where to store debug information about LDAP modification requests
ldif.tracelog.rootdir=/var/rudder/inventories/debug

/opt/rudder/etc/logback.xml

<configuration>
<!--
This is the default logging configuration file. It will be used if you
didn’t specify the "logback.configurationFile" JVM option.
For example, to use a loggin configuration file in "/etc/rudder":
java ... -Dlogback.configurationFile=/etc/rudder/logback.xml

Full information about the file format is available on the project
web site: http://logback.qos.ch/manual/configuration.html#syntax
-->

<!--
Appender configuration - where&how to write logs in SLF4J speaking.
===
Our default configuration : log on stdout appender so that our logs
are managed by the container log system (and so, if Tomcat/Jetty/etc
logs are stored in files and rotated, so are our log information).

Log format is:
- date/time/thread of the log on 30 chars (fixed)

Rudder 2.11 - User Manual 97 / 133

- log level on 5 char (fixed)
- name of the logger (and so the class) on 36 chars, with

package name folding
- log message follows
- limit exception trace to 30 calls

You should not have to modify that.
-->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

<Pattern>%-30(%d{HH:mm:ss.SSS} [%thread]) %-5level %logger{36} - %msg%n%xEx{30}</ ←↩
Pattern>

</encoder>
</appender>

<!--
Manage the global log level of the application.
===

That level will be used for all logs that are not
more precisely defined below (i.e for whom there is
no <logger name="...." level="..."/> defined)

Available log levels are:
trace < debug < info < warn < error < off

"off" completely shut down logging for the given logger

Do not modify the appender part if you don’t know what you
are doing.

-->

<root level="info">
<appender-ref ref="STDOUT" />

</root>

<!--
Debug LDAP write operations
===========================

This logger allow to trace LDAP writes operation and
to output them in LDIF file (the output directory path
is configured in the main configuration file)
The trace is done only if level is set to "trace"
WARNING: setting the level to trace may have major
performance issue, as A LOT of LDIF files will have
to be written.
You should activate that log only for debugging purpose.

-->

<logger name="trace.ldif.in.file" level="off" />

<!-- == -->
<!-- YOU SHOULD NOT HAVE TO CHANGE THINGS BELOW THAT LINE -->
<!-- == -->

<!--
Display AJAX information of the Web interface
===
Whatever the root logger level is, you are likely
to not wanting these information.
Set the level to debug if you are really interested

Rudder 2.11 - User Manual 98 / 133

in AJAX-related debug messages.
-->
<logger name="comet_trace" level="info" />

<!--
Spring Framework log level
==========================
We really don’t want to see SpringFramework debug info,
whatever the root logger level is - it’s an internal
component only.

-->
<logger name="org.springframework" level="warn" />

<!--
We don’t need to have timing information for each
HTTP request.
If you want to have these information, set the log
level for that logger to (at least) "info"
-->

<logger name="net.liftweb.util.TimeHelpers" level="warn" />

</configuration>

/opt/rudder/etc/openldap/slapd.conf

#
See slapd.conf(5) for details on configuration options.
This file should NOT be world readable.
#
include /opt/rudder/etc/openldap/schema/core.schema
include /opt/rudder/etc/openldap/schema/cosine.schema
include /opt/rudder/etc/openldap/schema/nis.schema
include /opt/rudder/etc/openldap/schema/dyngroup.schema
include /opt/rudder/etc/openldap/schema/inventory.schema
include /opt/rudder/etc/openldap/schema/rudder.schema

loglevel none stats

Define global ACLs to disable default read access.

Do not enable referrals until AFTER you have a working directory
service AND an understanding of referrals.
#referral ldap://root.openldap.org

pidfile /var/rudder/run/slapd.pid
argsfile /var/rudder/run/slapd.args

Load dynamic modules for backends and overlays:
modulepath /opt/rudder/libexec/openldap/
moduleload back_hdb.la
moduleload back_monitor.la
moduleload dynlist.la

Sample security restrictions
Require integrity protection (prevent hijacking)
Require 112-bit (3DES or better) encryption for updates
Require 63-bit encryption for simple bind
security ssf=1 update_ssf=112 simple_bind=64

Sample access control policy:
Root DSE: allow anyone to read it
Subschema (sub)entry DSE: allow anyone to read it

Rudder 2.11 - User Manual 99 / 133

Other DSEs:
Allow self write access
Allow authenticated users read access
Allow anonymous users to authenticate
Directives needed to implement policy:
access to dn.base="" by * read
access to dn.base="cn=Subschema" by * read
access to *
by self write
by users read
by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!

##
Global overlays (available on all databases)
##
overlay dynlist
dynlist-attrset dynGroup memberURL

###
BDB database definitions
###

database hdb
suffix "cn=rudder-configuration"
rootdn "cn=Manager,cn=rudder-configuration"
Cleartext passwords, especially for the rootdn, should
be avoid. See slappasswd(8) and slapd.conf(5) for details.
Use of strong authentication encouraged.
rootpw secret
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd and slap tools.
Mode 700 recommended.
directory /var/rudder/ldap/openldap-data
Checkpoint database every 128k written or every 5 minutes
checkpoint 0 1
Indices to maintain
index objectClass eq
index confirmed eq
index uuid,machineUuid,nodeId,machine,hostedVm,container,node,software eq
index mountPoint,softwareVersion,cn eq
index member eq

database monitor

/opt/rudder/etc/reportsInfo.xml

<ReportsInfoStore>
</ReportsInfoStore>

/opt/rudder/etc/rudder-users.xml

<!--
Authorizations
You must define a role attribute to every user you add.

A role is defined by a list of authorizations separated by commas.
There are two kind of authorizations :

Rudder 2.11 - User Manual 100 / 133

Predefined authorizations

There are 7 predefined authorization levels:
- administrator (all rights)
- administration_only (all administration)
- user (all node, configuration)
- configuration(all configuration)
- read_only (read all)
- compliance(read rule)
- inventory (read node)

There is three predefined roles for change request rights:
- validator (Can valid changes)
- deployer (Can deploy changes)
- workflow (Both deployer and validator)

The administrator role include the workflow ones

Custom authorizations

Custom authorisations are composed of two elements:
- A type of authorization, which define what is concerned

there’s is 10 types, which are : node, group, deployment,
administration, configuration, rule, technique, directive,
validator and deployer.

- A level of authorization,
levels are: read, write, edit, all(read, write, edit)
They are not inclusive (write and edit don’t include read,)
a custom authorisation has a format like that "type_level" like "node_all", " ←↩

group_read"

Examples

<user name="alice" password="xxxxxxx" role="administrator" />
<user name="bob" password="xxxxxxx" role="read_only"/>
<user name="carol" password="xxxxxxx" role="user,validator"/>

<user name="custom" password="custom" role="node_all,configuration_read,rule_read, ←↩
rule_edit,directive_read,technique_read">

- can read everything but administration,groups and deployment
- can do everything about node

exemple of bad lines
<user name="" password="secret2" role="administrator"/>
<user name="name" password="" role="administrator"/>

-->

/opt/rudder/etc/rudder-web.properties

##
Default configuration file for the application.
You can define the location of the file by
setting "rudder.configFile" JVM property,
for example:
java -Drudder.configFile=/opt/rudder/etc/rudder-web.conf
##

##
Application information
##
#define that property if you are behind a proxy

Rudder 2.11 - User Manual 101 / 133

#or anything that make the URL served by the
#servlet container be different than the public one
#note: if defined, must not end with /
#let blank to use default value
base.url=http://rudder-debian/rudder

##
LDAP properties
##

LDAP directory connection information
ldap.host=localhost
ldap.port=389
ldap.authdn=cn=manager,cn=rudder-configuration
ldap.authpw=secret

#inventories information
ldap.inventories.software.basedn=ou=Inventories, cn=rudder-configuration
ldap.inventories.accepted.basedn=ou=Accepted Inventories, ou=Inventories, cn=rudder- ←↩

configuration
ldap.inventories.pending.basedn=ou=Pending Inventories, ou=Inventories, cn=rudder- ←↩

configuration

#Base DN for Rudder Data
ldap.rudder.base=ou=Rudder, cn=rudder-configuration

#Base DN (the ou=Node is already given by the DIT)
ldap.node.base=cn=rudder-configuration

directory where LDIF trace of LDAP modify request are
stored when loglevel is ’trace’
ldif.tracelog.rootdir=/var/rudder/inventories/debug

##
Other Rudder Configuration properties
##

#
directory used as root directory to store LDIF dump
of historised inventories
history.inventories.rootdir=/var/rudder/inventories/historical

##
Upload directory
##
directory where new uploaded files are stored
upload.root.directory=/var/rudder/files/

##
Emergency stop
##
path to the script/binary that allows emergency orchestrator stop
bin.emergency.stop=/opt/rudder/bin/cfe-red-button.sh

##
Promise writer directory configuration
##
rudder.dir.config=/opt/rudder/etc/
rudder.dir.policyPackages=/opt/rudder/share/policy-templates
rudder.dir.licensesFolder=/opt/rudder/etc/licenses

Rudder 2.11 - User Manual 102 / 133

rudder.dir.policies=/var/rudder/
rudder.dir.backup=/var/rudder/backup/
rudder.dir.dependencies=/var/rudder/tools/
rudder.dir.sharing=/var/rudder/files/
rudder.dir.lock=/var/rudder/lock/
rudder.endpoint.cmdb=http://localhost:8080/endpoint/upload/

Port used by the community edition
rudder.community.port=5309

rudder.jdbc.driver=org.postgresql.Driver
rudder.jdbc.url=jdbc:postgresql://localhost:5432/rudder
rudder.jdbc.username=rudder
rudder.jdbc.password=Normation

#
Destination directory for files distributed
with the copyFile policy
#
policy.copyfile.destination.dir=/some/default/destination/directory/

#
Command line to check the promises generated
#
rudder.community.checkpromises.command=/var/rudder/cfengine-community/bin/cf-promises
rudder.nova.checkpromises.command=/bin/true

#
Interval of time between two dynamic group update batch
Expect an int (amount of minutes)
#
rudder.batch.dyngroup.updateInterval=5

#
Interval of time (in seconds) between two checks
for a policy template library update (a commit)
300s = 5minutes
#
rudder.batch.ptlib.updateInterval=300

#
Configure the refs path to use for the git repository for
the Policy Template Reference Library.
The default is to use "refs/heads/master" (the local master
branche).
You have to use the full ref path.
rudder.ptlib.git.refs.path=refs/heads/master

14.6 Generic methods

This section documents all the generic methods available in the Technique Editor.

Rudder 2.11 - User Manual 103 / 133

14.6.1 Command

14.6.1.1 command_execution

Execute a command

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• command_name: Command name

Classes defined

command_execution_${command_name}_{kept, repaired, not_ok, reached}

14.6.1.2 command_execution_result

Execute a command and create outcome classes depending on its exit code

Compatible with nodes running Rudder 2.11 or higher.

Usage

Execute a command and create outcome classes depending on the exit codes given in parameters. If an exit code is not in the list
it will lead to an error status. If you want 0 to be a success you have to list it in the kept_codes list

Parameters

• command: The command to run

• kept_codes: List of codes that produce a kept status separated with commas (ex: 1,2,5)

• repaired_codes: List of codes that produce a repaired status separated with commas (ex: 3,4,6)

Classes defined

command_execution_result_${command}_{kept, repaired, not_ok, reached}

14.6.2 Directory

14.6.2.1 directory_check_exists

Checks if a directory exists

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class directory_check_exists_${directory_name}_{ok, reached, kept} if the
directory exists, or directory_check_exists_${directory_name}_{not_ok, reached, not_kept, fai
led} if the directory doesn’t exists

Parameters

• directory_name: Full path of the directory to check

Classes defined

directory_check_exists_${directory_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 104 / 133

14.6.2.2 directory_create

Create a directory if it doesn’t exist

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• target: Full path of directory to create (trailing / is optional)

Classes defined

directory_create_${target}_{kept, repaired, not_ok, reached}

14.6.3 File

14.6.3.1 file_check_FIFO_pipe

Checks if a file exists and is a FIFO/Pipe

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_FIFO_pipe_${file_name}_{ok, reached, kept} if the file is a
FIFO, or file_check_FIFO_pipe_${file_name}_{not_ok, reached, not_kept, failed} if the file is not
a fifo or does not exist

Parameters

• file_name: File name

Classes defined

file_check_FIFO_pipe_${file_name}_{kept, repaired, not_ok, reached}

14.6.3.2 file_check_block_device

Checks if a file exists and is a block device

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_block_device_${file_name}_{ok, reached, kept} if the file is a
block_device, or file_check_block_device_${file_name}_{not_ok, reached, not_kept, failed} if
the file is not a block device or does not exist

Parameters

• file_name: File name

Classes defined

file_check_block_device_${file_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 105 / 133

14.6.3.3 file_check_character_device

Checks if a file exists and is a character device

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_character_device_${file_name}_{ok, reached, kept} if the
file is a character device, or file_check_character_device_${file_name}_{not_ok, reached, not_kep
t, failed} if the file is not a character device or does not exist

Parameters

• file_name: File name

Classes defined

file_check_character_device_${file_name}_{kept, repaired, not_ok, reached}

14.6.3.4 file_check_exists

Checks if a file exists

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_exists_${file_name}_{ok, reached, kept} if the file exists, or
file_check_exists_${file_name}_{not_ok, reached, not_kept, failed} if the file doesn’t exists

Parameters

• file_name: File name

Classes defined

file_check_exists_${file_name}_{kept, repaired, not_ok, reached}

14.6.3.5 file_check_hardlink

Checks if two files are the same (hard links)

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_hardlink_${file_name_1}_{ok, reached, kept} if the two files
${file_name_1} and ${file_name_2} are hard links of each other, or file_check_hardlink_${file_name_1
}_{not_ok, reached, not_kept, failed} if if the files are not hard links.

Parameters

• file_name_1: File name #1

• file_name_2: File name #2

Classes defined

file_check_hardlink_${file_name_1}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 106 / 133

14.6.3.6 file_check_regular

Checks if a file exists and is a regular file

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_regular_${file_name}_{ok, reached, kept} if the file is a regu-
lar_file, or file_check_regular_${file_name}_{not_ok, reached, not_kept, failed} if the file is not
a regular file or does not exist

Parameters

• file_name: File name

Classes defined

file_check_regular_${file_name}_{kept, repaired, not_ok, reached}

14.6.3.7 file_check_socket

Checks if a file exists and is a socket

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_socket_${file_name}_{ok, reached, kept} if the file is a socket,
or file_check_socket_${file_name}_{not_ok, reached, not_kept, failed} if the file is not a socket
or does not exist

Parameters

• file_name: File name

Classes defined

file_check_socket_${file_name}_{kept, repaired, not_ok, reached}

14.6.3.8 file_check_symlink

Checks if a file exists and is a symlink

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_symlink_${file_name}_{ok, reached, kept} if the file is a sym-
link, or file_check_symlink_${file_name}_{not_ok, reached, not_kept, failed} if the file is not a
symlink or does not exist

Parameters

• file_name: File name

Classes defined

file_check_symlink_${file_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 107 / 133

14.6.3.9 file_check_symlinkto

Checks if first file is symlink to second file

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class file_check_symlinkto_${target}_{ok, reached, kept} if the file ${symli
nk} is a symbolic link to ${target}, or file_check_symlinkto_${target}_{not_ok, reached, not_kep
t, failed} if if it is not a symbolic link, or any of the files does not exist. The symlink’s path is resolved to the absolute path
and checked against the target file’s path, which must also be an absolute path.

Parameters

• symlink: Symbolic link (absolute path)

• target: Target file (absolute path)

Classes defined

file_check_symlinkto_${symlink}_{kept, repaired, not_ok, reached}

14.6.3.10 file_copy_from_local_source

This is a bundle to ensure that a file or directory is copied from a local source

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source: Source file

• destination: Destination file

Classes defined

file_copy_from_local_source_${destination}_{kept, repaired, not_ok, reached}

14.6.3.11 file_copy_from_local_source_recursion

This is a bundle to ensure that a file or directory is copied from a local source

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source: Source file

• destination: Destination file

• recursion: Recursion depth to enforce for this path (0, 1, 2, . . . , inf)

Classes defined

file_copy_from_local_source_${destination}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 108 / 133

14.6.3.12 file_copy_from_remote_source

This is a bundle to ensure that a file or directory is copied from a remote source

Compatible with nodes running Rudder 2.11 or higher.

Usage

Note: This method uses CFEngine file copy protocol, and can only download files from the policy server. To download a file
from an external source, you can use HTTP with the file_download method.

This method requires that the policy server is configured to accept copy of the source file from the agents it will be applied to.

You have to write the full path of the file on the policy server, for example:

/home/myuser/myfile

If you are using Rudder, you can download a file from the shared files with:

/var/rudder/configuration-repository/shared-files/PATH_TO_YOUR_FILE

Parameters

• source: Source file

• destination: Destination file

Classes defined

file_copy_from_remote_source_${destination}_{kept, repaired, not_ok, reached}

14.6.3.13 file_copy_from_remote_source_recursion

This is a bundle to ensure that a file or directory is copied from a remote source

Compatible with nodes running Rudder 2.11 or higher.

Usage

This method requires that the policy server is configured to accept copy of the source file or directory from the agents it will be
applied to.

You have to write the full path of the file or directory on the policy server, for example:

/home/myuser/mydirectory

If you are using Rudder, you can download a file from the shared files with:

/var/rudder/configuration-repository/shared-files/PATH_TO_YOUR_DIRECTORY_OR_FILE

Parameters

• source: Source file

• destination: Destination file

• recursion: Recursion depth to enforce for this path (0, 1, 2, . . . , inf)

Classes defined

file_copy_from_remote_source_${destination}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 109 / 133

14.6.3.14 file_create

Create a file if it doesn’t exist

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• target: File to create

Classes defined

file_create_${target}_{kept, repaired, not_ok, reached}

14.6.3.15 file_create_symlink

This is a bundle to create a symlink at a destination path and pointing to a source target except if a file or directory already exists.

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source: Source file

• destination: Destination file

Classes defined

file_create_symlink_${destination}_{kept, repaired, not_ok, reached}

14.6.3.16 file_create_symlink_enforce

This is a bundle to create a symlink at a destination path and pointing to a source target. This is also possible to enforce its
creation

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source: Source file

• destination: Destination file

• enforce: Force symlink if file already exist (true or false)

Classes defined

file_create_symlink_${destination}_{kept, repaired, not_ok, reached}

14.6.3.17 file_create_symlink_force

This is a bundle to create a symlink at a destination path and pointing to a source target even if a file or directory already exists.

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source: Source file

• destination: Destination file

Classes defined

file_create_symlink_${destination}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 110 / 133

14.6.3.18 file_download

Download a file if it does not exit, using curl with a fallback on wget

Compatible with nodes running Rudder 2.11 or higher.

Usage

This method finds a HTTP command-line tool and downloads the given source into the destination.

It tries curl first, and wget as fallback.

Parameters

• source: URL to download from

• destination: File destination

Classes defined

file_download_${destination}_{kept, repaired, not_ok, reached}

14.6.3.19 file_enforce_content

This is a bundle to enfore the content of a file

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• lines: Line(s) to add in the file

• enforce: Enforce the file to contain only line(s) defined (true or false)

Classes defined

file_ensure_lines_present_${file}_{kept, repaired, not_ok, reached}

14.6.3.20 file_ensure_block_in_section

This is a bundle to ensure that a section contains exactly a text block

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• section_start: Start of the section

• section_end: End of the section

• block: Block representing the content of the section

Classes defined

file_ensure_block_in_section_${file}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 111 / 133

14.6.3.21 file_ensure_block_present

This is a bundle to ensure that a text block is present in a specific location

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• block: Block(s) to add in the file

Classes defined

file_ensure_block_present_${file}_{kept, repaired, not_ok, reached}

14.6.3.22 file_ensure_key_value

Ensure that the file contains a pair of "key separator value"

Compatible with nodes running Rudder 2.11 or higher.

Usage

Edit (or create) the file, and ensure it contains an entry key→ value with arbitrary separator between the key and its value. If the
key is already present, the method will change the value associated with this key.

Parameters

• file: File name to edit

• key: Key to define

• value: Value to define

• separator: Separator between key and value (for example "=" or " ")

Classes defined

file_ensure_key_value_${file}_{kept, repaired, not_ok, reached}

14.6.3.23 file_ensure_key_value_present_in_ini_section

This is a bundle to ensure that a key-value pair is present in a section in a specific location. The objective of this method is to
handle INI-style files.

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• section: Name of the INI-style section under which the line should be added or modified (not including the [] brackets)

• name: Name of the key to add or edit

• value: Value of the key to add or edit

Classes defined

file_ensure_key_value_present_in_ini_section_${file}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 112 / 133

14.6.3.24 file_ensure_keys_values

Ensure that the file contains all pairs of "key separator value", with arbitrary separator between each key and its value

Compatible with nodes running Rudder 2.11 or higher.

Usage

You can create a dict variable by using the variable_dict* methods.

Parameters

• file: File name to edit

• keys: Dict structure containing the keys (keys of the dict), and values to define (values of the dict)

• separator: Separator between key and value (for example "=" or " ")

Classes defined

file_ensure_keys_values_${file}_{kept, repaired, not_ok, reached}

14.6.3.25 file_ensure_line_present_in_ini_section

This is a bundle to ensure that a line is present in a section in a specific location. The objective of this method is to handle
INI-style files.

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• section: Name of the INI-style section under which lines should be added (not including the [] brackets)

• line: Line to ensure is present inside the section

Classes defined

file_ensure_line_present_in_ini_section_${file}_{kept, repaired, not_ok, reached}

14.6.3.26 file_ensure_line_present_in_xml_tag

This is a bundle to ensure that a line is present in a tag in a specific location. The objective of this method is to handle XML-style
files. Note that if the tag is not present in the file, it won’t be added, and the edition will fail.

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• tag: Name of the XML tag under which lines should be added (not including the <> brackets)

• line: Line to ensure is present inside the section

Classes defined

file_ensure_line_present_in_xml_tag_${file}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 113 / 133

14.6.3.27 file_ensure_lines_absent

This is a bundle to ensure that a line is absent in a specific location

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• lines: Line(s) to remove in the file

Classes defined

file_ensure_lines_absent_${file}_{kept, repaired, not_ok, reached}

14.6.3.28 file_ensure_lines_present

This is a bundle to ensure that one or more lines are present in a file

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• lines: Line(s) to add in the file

Classes defined

file_ensure_lines_present_${file}_{kept, repaired, not_ok, reached}

14.6.3.29 file_from_template

This is a bundle to build a file from a template

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source_template: Source file containing a template to be expanded

• destination: Destination file

Classes defined

file_from_template_${destination}_{kept, repaired, not_ok, reached}

14.6.3.30 file_from_template_mustache

This is a bundle to build a file from a mustache template

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source_template: Source file containing a template to be expanded

• destination: Destination file

Classes defined

file_from_template_${destination}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 114 / 133

14.6.3.31 file_from_template_type

This is a bundle to build a file from a template

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• source_template: Source file containing a template to be expanded

• destination: Destination file

• template_type: Template type (cfengine or mustache)

Classes defined

file_from_template_${destination}_{kept, repaired, not_ok, reached}

14.6.3.32 file_remove

Remove a file if it exists

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• target: File to remove

Classes defined

file_remove_${target}_{kept, repaired, not_ok, reached}

14.6.3.33 file_replace_lines

This is a bundle to ensure that a line in a file is replaced by another one

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• file: File name to edit

• line: Line to match in the file

• replacement: Line to add in the file as a replacement

Classes defined

file_replace_lines_${file}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 115 / 133

14.6.3.34 file_template_expand

This is a bundle to expand a template in a specific location

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• tml_file: File name (with full path within the framework) of the template file

• target_file: File name (with full path) where to expand the template

• mode: Mode of destination file

• owner: Owner of destination file

• group: Froup of destination file

Classes defined

file_template_expand_${target_file}_{kept, repaired, not_ok, reached}

14.6.4 Group

14.6.4.1 group_absent

Make sure a group is absent

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• group: Group name

Classes defined

group_absent_${group}_{kept, repaired, not_ok, reached}

14.6.4.2 group_present

Create a group

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• group: Group name

Classes defined

group_present_${group}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 116 / 133

14.6.5 Http

14.6.5.1 http_request_check_status_headers

Checks status of an HTTP URL

Compatible with nodes running Rudder 2.11 or higher.

Usage

Perform a HTTP request on the URL, method and headers provided and check that the response has the expected status code (ie
200, 404, 503, etc)

Parameters

• method: Method to call the URL (GET, POST, PUT, DELETE)

• url: URL to query

• expected_status: Expected status code of the HTTP response

• headers: Headers to include in the HTTP request (as a string, without ’)

Classes defined

http_request_check_status_headers_${url}_{kept, repaired, not_ok, reached}

14.6.5.2 http_request_content_headers

Make an HTTP request with a specific header

Compatible with nodes running Rudder 2.11 or higher.

Usage

Perform a HTTP request on the URL, method and headers provided and send the content provided. Will return an error if the
request failed.

Parameters

• method: Method to call the URL (POST, PUT)

• url: URL to send content to

• content: Content to send

• headers: Headers to include in the HTTP request

Classes defined

http_content_headers_${url}_{kept, repaired, not_ok, reached}

14.6.6 Logger

14.6.6.1 logger_rudder

Logging output for Rudder reports

Compatible with nodes running Rudder 2.11 or higher.

Parameters

Rudder 2.11 - User Manual 117 / 133

• message: The common part of the message to display

• class_prefix: The prefix of the class for different states

Classes defined

logger_rudder_${class_prefix}_{kept, repaired, not_ok, reached}

14.6.7 Package

14.6.7.1 package_check_installed

Verify if a package is installed in any version

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class package_check_installed_${file_name}_{ok, reached, kept} if the pack-
age is installed, or package_check_installed_${file_name}_{not_ok, reached, not_kept, failed}
if the package is not installed

Parameters

• package_name: Name of the package to check

Classes defined

package_check_installed_${package_name}_{kept, repaired, not_ok, reached}

14.6.7.2 package_install

Install or update a package in its latest version available

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• package_name: Name of the package to install

Classes defined

package_install_${package_name}_{kept, repaired, not_ok, reached}

14.6.7.3 package_install_version

Install or update a package in a specific version

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• package_name: Name of the package to install

• package_version: Version of the package to install (can be "latest" to install it in its latest version)

Classes defined

package_install_${package_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 118 / 133

14.6.7.4 package_install_version_cmp

Install a package or verify if it is installed in a specific version, or higher or lower version than a version specified

Compatible with nodes running Rudder 2.11 or higher.

Usage

Example:

methods:
"any" usebundle => package_install_version_cmp("postgresql", ">=", "9.1", "verify");

Parameters

• package_name: Name of the package to install or verify

• version_comparator: Comparator between installed version and defined version, can be ==,⇐,>=,<,>,!=

• package_version: The version of the package to verify (can be "latest" for latest version)

• action: Action to perform, can be add, verify (defaults to verify)

Classes defined

package_install_${package_name}_{kept, repaired, not_ok, reached}

14.6.7.5 package_install_version_cmp_update

Install a package or verify if it is installed in a specific version, or higher or lower version than a version specified, optionally test
update or not (Debian-, Red Hat- or SuSE-like systems only)

Compatible with nodes running Rudder 2.11 or higher.

Usage

Example:

methods:
"any" usebundle => package_install_version_cmp_update("postgresql", ">=", "9.1", " ←↩

verify", "false");

Parameters

• package_name: Name of the package to install or verify

• version_comparator: Comparator between installed version and defined version, can be ==,⇐,>=,<,>,!=

• package_version: The version of the package to verify (can be "latest" for latest version)

• action: Action to perform, can be add, verify (defaults to verify)

• update_policy: While verifying packages, check against latest version ("true") or just installed ("false")

Classes defined

package_install_${package_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 119 / 133

14.6.7.6 package_remove

Remove a package

Compatible with nodes running Rudder 2.11 or higher.

Usage

Example:

methods:
"any" usebundle => package_remove("htop");

Parameters

• package_name: Name of the package to remove

Classes defined

package_remove_${package_name}_{kept, repaired, not_ok, reached}

14.6.7.7 package_verify

Verify if a package is installed in its latest version available

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• package_name: Name of the package to verify

Classes defined

package_install_${package_name}_{kept, repaired, not_ok, reached}

14.6.7.8 package_verify_version

Verify if a package is installed in a specific version

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• package_name: Name of the package to verify

• package_version: Version of the package to verify (can be "latest" for latest version)

Classes defined

package_install_${package_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 120 / 133

14.6.8 Permissions

14.6.8.1 permissions

Set permissions on a file or directory (non recursively)

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• path: Path to the file/directory

• mode: Mode to enforce (like "640")

• owner: Owner to enforce (like "root")

• group: Group to enforce (like "wheel")

Classes defined

permissions_${path}_{kept, repaired, not_ok, reached}

14.6.8.2 permissions_dirs

Verify if a directory has the right permissions non recursively

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• path: Path of the directory

• mode: Mode to enfore

• owner: Owner to enforce

• group: Group to enforce

Classes defined

permissions_${path}_{kept, repaired, not_ok, reached}

14.6.8.3 permissions_dirs_recurse

Verify if a directory has the right permissions recursively

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• path: Path to the directory

• mode: Mode to enforce

• owner: Owner to enforce

• group: Group to enforce

Classes defined

permissions_${path}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 121 / 133

14.6.8.4 permissions_recurse

Verify if a file or directory has the right permissions recursively

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• path: Path to the file / directory

• mode: Mode to enforce

• owner: Owner to enforce

• group: Group to enforce

Classes defined

permissions_${path}_{kept, repaired, not_ok, reached}

14.6.8.5 permissions_type_recursion

This is a bundle to ensure that a file or directory is present and has the right mode/owner/group

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• path: Path to edit

• mode: Mode of the path to edit

• owner: Owner of the path to edit

• group: Group of the path to edit

• type: Type of the path to edit (all/files/directories)

• recursion: Recursion depth to enforce for this path (0, 1, 2, . . . , inf)

Classes defined

permissions_${path}_{kept, repaired, not_ok, reached}

14.6.9 Schedule

14.6.9.1 schedule_simple

Trigger a repaired outcome when a job should be run

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class schedule_simple_${job_id}_{kept,repaired,not_ok,ok,reached} * _ok or
_kept for when there is nothing to do * _repaired if the job should run * _not_ok and _reached have their usual meaning

Parameters

• job_id: A string to identify this job

• agent_periodicity: How often you run the agent in minutes

Rudder 2.11 - User Manual 122 / 133

• max_execution_delay_minutes: On how many minutes you want to spread the job

• max_execution_delay_hours: On how many hours you want to spread the job

• start_on_minutes: At which minute should be the first run

• start_on_hours: At which hour should be the first run

• start_on_day_of_week: At which day of week should be the first run

• periodicity_minutes: How often should the job run

• periodicity_hours: How often should the job run

• periodicity_days: How often should the job run

• mode: "nodups": avoid duplicate runs in the same period / "catchup": avoid duplicates and one or more run have been missed,
run once before next period / "stateless": no check is done on past runs

Classes defined

schedule_simple_${job_id}_{kept, repaired, not_ok, reached}

14.6.9.2 schedule_simple_catchup

Trigger a repaired outcome when a job should be run

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class schedule_simple_${job_id}_{kept,repaired,not_ok,ok,reached} * _ok or
_kept for when there is nothing to do * _repaired if the job should run * _not_ok and _reached have their usual meaning

Parameters

• job_id: A string to identify this job

• agent_periodicity: How often you run the agent in minutes

• max_execution_delay_minutes: On how many minutes you want to spread the job

• max_execution_delay_hours: On how many hours you want to spread the job

• start_on_minutes: At which minute should be the first run

• start_on_hours: At which hour should be the first run

• start_on_day_of_week: At which day of week should be the first run

• periodicity_minutes: How often should the job run

• periodicity_hours: How often should the job run

• periodicity_days: How often should the job run

• mode: "nodups": avoid duplicate runs in the same period / "catchup": avoid duplicates and one or more run have been missed,
run once before next period / "stateless": no check is done on past runs

Classes defined

schedule_simple_${job_id}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 123 / 133

14.6.9.3 schedule_simple_nodups

Trigger a repaired outcome when a job should be run

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class schedule_simple_${job_id}_{kept,repaired,not_ok,ok,reached} * _ok or
_kept for when there is nothing to do * _repaired if the job should run * _not_ok and _reached have their usual meaning

Parameters

• job_id: A string to identify this job

• agent_periodicity: How often you run the agent in minutes

• max_execution_delay_minutes: On how many minutes you want to spread the job

• max_execution_delay_hours: On how many hours you want to spread the job

• start_on_minutes: At which minute should be the first run

• start_on_hours: At which hour should be the first run

• start_on_day_of_week: At which day of week should be the first run

• periodicity_minutes: How often should the job run

• periodicity_hours: How often should the job run

• periodicity_days: How often should the job run

• mode: "nodups": avoid duplicate runs in the same period / "catchup": avoid duplicates and one or more run have been missed,
run once before next period / "stateless": no check is done on past runs

Classes defined

schedule_simple_${job_id}_{kept, repaired, not_ok, reached}

14.6.9.4 schedule_simple_stateless

Trigger a repaired outcome when a job should be run

Compatible with nodes running Rudder 2.11 or higher.

Usage

This bundle will define a class schedule_simple_${job_id}_{kept,repaired,not_ok,ok,reached} * _ok or
_kept for when there is nothing to do * _repaired if the job should run * _not_ok and _reached have their usual meaning

Parameters

• job_id: A string to identify this job

• agent_periodicity: How often you run the agent in minutes

• max_execution_delay_minutes: On how many minutes you want to spread the job

• max_execution_delay_hours: On how many hours you want to spread the job

• start_on_minutes: At which minute should be the first run

• start_on_hours: At which hour should be the first run

• start_on_day_of_week: At which day of week should be the first run

Rudder 2.11 - User Manual 124 / 133

• periodicity_minutes: How often should the job run

• periodicity_hours: How often should the job run

• periodicity_days: How often should the job run

• mode: "nodups": avoid duplicate runs in the same period / "catchup": avoid duplicates and one or more run have been missed,
run once before next period / "stateless": no check is done on past runs

Classes defined

schedule_simple_${job_id}_{kept, repaired, not_ok, reached}

14.6.10 Service

14.6.10.1 service_action

Trigger an action on a service using tools like systemctl, service, init.d, Windows. . .

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service

• action: Action to trigger on the service (start, stop, restart, reload, . . .)

Classes defined

service_action_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.2 service_check_running

Check if a service is running using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Process name

Classes defined

service_check_running_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.3 service_check_running_ps

Check if a service is running using ps

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_regex: Regular expression used to select a process in ps output

Classes defined

service_check_running_${service_regex}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 125 / 133

14.6.10.4 service_check_started_at_boot

Check if a service is set to start at boot using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service name (as recognized by systemd, init.d, etc. . .)

Classes defined

service_check_started_at_boot_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.5 service_ensure_running

Ensure that a service is running using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service name (as recognized by systemd, init.d, etc. . .)

Classes defined

service_ensure_running_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.6 service_ensure_running_path

Ensure that a service is running using the appropriate method, specifying the path of the service in the ps output, or using
Windows task manager

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service name (as recognized by systemd, init.d, Windows, etc. . .)

• service_path: Service with its path, as in the output from ps

Classes defined

service_ensure_running_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.7 service_ensure_started_at_boot

Force a service to be started at boot

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service name (as recognized by systemd, init.d, Windows, SRC, SMF, etc. . .)

Classes defined

service_ensure_started_at_boot_${service_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 126 / 133

14.6.10.8 service_ensure_stopped

Ensure that a service is stopped using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service

Classes defined

service_ensure_stopped_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.9 service_reload

Reload a service using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service

Classes defined

service_reload_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.10 service_restart

Restart a service using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Name of the service to restart in systemd, init.d, . . .

Classes defined

service_restart_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.11 service_restart_if

Restart a service using the appropriate method if the specified class is true, otherwise it is considered as not required and success
classes are returned.

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service

• trigger_class: class(es) which will trigger the restart of Service "(package_service_installed|service_conf_changed)" by ex-
ample

Classes defined

service_restart_${service_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 127 / 133

14.6.10.12 service_start

Start a service using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service

Classes defined

service_start_${service_name}_{kept, repaired, not_ok, reached}

14.6.10.13 service_stop

Stop a service using the appropriate method

Compatible with nodes running Rudder 2.11 or higher.

Parameters

• service_name: Service

Classes defined

service_stop_${service_name}_{kept, repaired, not_ok, reached}

14.6.11 User

14.6.11.1 user_absent

Remove a user

Compatible with nodes running Rudder 2.11 or higher.

Usage

This method ensures that a user does not exist on the system.

Parameters

• login: User login

Classes defined

user_absent_${login}_{kept, repaired, not_ok, reached}

14.6.11.2 user_create

Create a user

Compatible with nodes running Rudder 2.11 or higher.

Usage

This method does not create the user’s home directory.

Parameters

Rudder 2.11 - User Manual 128 / 133

• login: User login

• description: User description

• home: User’s home directory

• group: User’s primary group

• shell: User’s shell

• locked: Is the user locked ? true or false

Classes defined

user_create_${login}_{kept, repaired, not_ok, reached}

14.6.12 Variable

14.6.12.1 variable_dict

Define a variable that contains key,value pairs (a dictionnary)

Compatible with nodes running Rudder 2.11 or higher.

Usage

To use the generated variable, you must use the form ${variable_prefix.variable_name[key]} with each name
replaced with the parameters of this method.

Be careful that using a global variable can lead to unpredictable content in case of multiple definition, which is implicitly the case
when a technique has more than one instance (directive). Please note that only global variables are available within templates.

Parameters

• variable_prefix: The prefix of the variable name

• variable_name: The variable to define, the full name will be variable_prefix.variable_name

• value: The variable content in JSON format

Classes defined

variable_dict_${variable_name}_{kept, repaired, not_ok, reached}

14.6.12.2 variable_dict_from_file

Define a variable that contains key,value pairs (a dictionnary) from a JSON file

Compatible with nodes running Rudder 2.11 or higher.

Usage

To use the generated variable, you must use the form ${variable_prefix.variable_name[key]} with each name
replaced with the parameters of this method.

Be careful that using a global variable can lead to unpredictable content in case of multiple definition, which is implicitly the case
when a technique has more than one instance (directive). Please note that only global variables are available within templates.

Parameters

• variable_prefix: The prefix of the variable name

• variable_name: The variable to define, the full name will be variable_prefix.variable_name

• file_name: The file name with JSON content

Classes defined

variable_dict_from_file_${variable_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 129 / 133

14.6.12.3 variable_iterator

Define a variable that will be automatically iterated over

Compatible with nodes running Rudder 2.11 or higher.

Usage

The generated variable is a special variable (slist in cfengine speaking) that is automatically iterated over. When you call a
generic method with this variable as a parameter, n calls will be made, one for each items of the variable. Note: there is a limit
of 10000 items

To use the generated variable, you must use the form ${variable_prefix.variable_name} with each name replaced
with the parameters of this method.

Be careful that using a global variable can lead to unpredictable content in case of multiple definition, which is implicitly the case
when a technique has more than one instance (directive). Please note that only global variables are available within templates.

Parameters

• variable_prefix: The prefix of the variable name

• variable_name: The variable to define, the full name will be variable_prefix.variable_name

• value: The variable content

• separator: Regular expression that is used to split the value into items (usually: ,)

Classes defined

variable_iterator_${variable_name}_{kept, repaired, not_ok, reached}

14.6.12.4 variable_iterator_from_file

Define a variable that will be automatically iterated over

Compatible with nodes running Rudder 2.11 or higher.

Usage

The generated variable is a special variable (slist in cfengine speaking) that is automatically iterated over. When you call a
generic method with this variable as a parameter, n calls will be made, one for each items of the variable. Note: there is a limit
of 10000 items Note: empty items are ignored

To use the generated variable, you must use the form ${variable_prefix.variable_name} with each name replaced
with the parameters of this method.

Be careful that using a global variable can lead to unpredictable content in case of multiple definition, which is implicitly the case
when a technique has more than one instance (directive). Please note that only global variables are available within templates.

Parameters

• variable_prefix: The prefix of the variable name

• variable_name: The variable to define, the full name will be variable_prefix.variable_name

• file_name: The path to the file

• separator_regex: Regular expression that is used to split the value into items (usually:)

• comments_regex: Regular expression that is used to remove comments (usually: #.*?(?=))

Classes defined

variable_iterator_from_file_${variable_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 130 / 133

14.6.12.5 variable_string

Define a variable from a string parameter

Compatible with nodes running Rudder 2.11 or higher.

Usage

To use the generated variable, you must use the form ${variable_prefix.variable_name} with each name replaced
with the parameters of this method.

Be careful that using a global variable can lead to unpredictable content in case of multiple definition, which is implicitly the case
when a technique has more than one instance (directive). Please note that only global variables are available within templates.

Parameters

• variable_prefix: The prefix of the variable name

• variable_name: The variable to define, the full name will be variable_prefix.variable_name

• value: The variable content

Classes defined

variable_string_${variable_name}_{kept, repaired, not_ok, reached}

14.6.12.6 variable_string_from_file

Define a variable from a file content

Compatible with nodes running Rudder 2.11 or higher.

Usage

To use the generated variable, you must use the form ${variable_prefix.variable_name} with each name replaced
with the parameters of this method.

Be careful that using a global variable can lead to unpredictable content in case of multiple definition, which is implicitly the case
when a technique has more than one instance (directive). Please note that only global variables are available within templates.

Parameters

• variable_prefix: The prefix of the variable name

• variable_name: The variable to define, the full name will be variable_prefix.variable_name

• file_name: The path of the file

Classes defined

variable_string_from_file_${variable_name}_{kept, repaired, not_ok, reached}

Rudder 2.11 - User Manual 131 / 133

Chapter 15

Appendix: Glossary

Active Techniques This is an organized list of the Techniques selected and modified by the user. By default this list is the
same as the Technique Library. Techniques can be disabled or deleted, and then activated again with a simple drag and
drop. Categories can be reorganised according to the desired taxonomy. A Technique can appear only once in the Active
Techniques list.

Applied Policy This is the result of the conversion of a Policy Instance into a set of CFEngine Promises for a particular Node.

cf-execd This CFEngine Community daemon is launching the CFEngine Community Agent cf-agent every 5 minutes.

cf-serverd This CFEngine Community daemon is listening on the network on Rudder Root and Relay servers, serving
policies and files to Rudder Nodes.

CFEngine Nova Managing Windows machines requires the commercial version of CFEngine, called Nova. It needs to open
the port 5308 TCP from the Node to the Rudder Root Server.

CFEngine server Distribute the CFEngine configuration to the nodes.

CFEngine CFEngine is a configuration management software. CFEngine comes from a contraction of “ConFiguration En-
gine”.

Directive This is an instance of a Technique, which allows to set values for the parameters of the latter. Each Directive can have
a unique name. A Directive should be completed with a short and a long description, and a collection of parameters for the
variables defined by the Technique.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

LDAP server Store the inventories and the Node configurations.

Port 514, TCP Syslog port, used to centralize reports.

Port 5308, TCP Nova communication port, used by the commercial version of CFEngine, which is required to manage Win-
dows nodes.

Port 5309, TCP CFEngine communication port, used to communicate the policies to the rudder nodes.

Port 80, TCP, for nodes HTTP communication port, used to send inventory and fetch the id of the Rudder Server.

Port 443, TCP, for users HTTPS communication port, used by the users to access to the web interface.

Rudder Node A Node is client computer managed by Rudder. To be managed, a Node must first be accepted as an authorized
node.

Rudder Relay Server Relay servers are an optional component in a Rudder architecture. They can act as a proxy for all network
communications between Rudder agents and a Rudder server. This enables them to be installed in a remote datacenter, or
inside a restricted network zone, to limit the network flows required to use Rudder.

Rudder 2.11 - User Manual 132 / 133

Rudder Root Server This is the core of the Rudder infrastructure. This server must be a dedicated machine (either virtual of
physical), and contains the main application components: the web interface, databases, configuration data, logs. . .

Rudder Rudder is a Drift Assessment software. Rudder associates Asset Management and Configuration Management. Rudder
is a Free Software developed by Normation.

Rule It is the application of one or more directives to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

SQL server Store the received reports from the nodes.

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Technique Library This is an organized list of all available Techniques. This list can’t be modified: every change made by a
user will be applied to the Active Techniques.

Technique This is a configuration skeleton, adapted to a function or a particular service (e.g. DNS resolver configuration). This
skeleton includes the configuration logic for this function or service, and can be set according to a list of variables (in the
same example: IP addresses of DNS servers, the default search box, . . .)

Web server application Execute the web interface and the server that handles the new inventories.

Web server front-end Handle the connection to the Web interface, the received inventories and the sharing of the UUID
Rudder Root Server.

Rudder 2.11 - User Manual 133 / 133

License

Copyright © 2011-2013 Normation SAS

Rudder User Documentation by Normation SAS is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License.

Permissions beyond the scope of this license may be available at Normation SAS.

External contributions:

CSS styles from the OpenStack manuals under Apache License version 2.0.

Font Awesome by Dave Gandy - http://fontawesome.io

Lato fonts by Łukasz Dziedzic, under SIL Open Font License 1.1.

http://normation.com
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://normation.com
https://github.com/openstack/openstack-manuals
http://fontawesome.io
http://www.latofonts.com/lato-free-fonts/

	Online version
	Introduction
	Concepts
	Rudder functions
	Asset management concepts
	New Nodes
	Search Nodes
	Groups of Nodes

	Configuration management concepts

	Rudder components

	Installation
	Requirements
	Networking
	Mandatory flows
	Optional flows
	DNS - Name resolution

	Supported Operating Systems
	For Rudder Nodes
	For Rudder Root Server

	Hardware specifications and sizing for Rudder Root Server
	Memory
	Disk

	Install Rudder Server
	Install Rudder Root server on Debian or Ubuntu
	Add the Rudder packages repository
	Java on Debian/Ubuntu
	Install your Rudder Root Server
	Incompatibility between Rudder server on Ubuntu and Rudder agents using syslog (RHEL/CentOS 5)

	Install Rudder Root server on SLES
	Configure the package manager
	Add the Rudder packages repository
	Install your Rudder Root Server

	Install Rudder Root server on RHEL-like systems
	Java on RHEL/CentOS
	Add the Rudder packages repository
	Install your Rudder Root Server

	Initial configuration of your Rudder Root Server
	Validate the installation

	Install Rudder Agent
	Install Rudder Agent on Debian or Ubuntu
	Install Rudder Agent on RHEL or CentOS
	Install Rudder Agent on SLES
	Configure and validate
	Configure Rudder Agent
	Start Rudder Agent:
	Validate new Node

	Upgrade
	Caution cases
	Known bugs

	On Debian or Ubuntu
	On RHEL or CentOS
	On SLES
	Technique upgrade

	Rudder Web Interface
	Authentication
	Presentation of Rudder Web Interface
	Rudder Home
	Node Management
	Configuration Management
	Administration

	Units supported as search parameters
	Bytes and multiples
	Convenience notation
	Supported units

	Node Management
	Node Inventory
	Accept new Nodes
	Search Nodes
	Quick Search
	Advanced Search

	Group of Nodes

	Configuration Management
	Techniques
	Concepts
	Manage the Techniques
	Available Techniques
	Application management
	Distributing files
	File state configuration
	System settings: Miscellaneous
	System settings: Networking
	System settings: Process
	System settings: Remote access
	System settings: User management

	Directives
	Rules
	Variables
	User defined parameters
	System variables

	Compliance
	Validation workflow in Rudder
	What is a Change request ?
	Change request status
	Change request management page
	Change request detail page

	How to create a Change request ?
	How to validate a Change request ?
	Roles
	Self Validations

	Change request and conflicts
	Notifications:
	Pending change requests
	Change already proposed on Rule/Directive/Group

	Manage your IT
	How to
	Enforce a line is present in a file only once

	Security considerations
	Data confidentiality
	Private data
	Common data

	Administration
	Archives
	Archive usecases
	Changes testing
	Changes qualification

	Concepts
	Archiving
	Importing configuration
	Deploy a preconfigured instance

	Event Logs
	Policy Server
	Configure allowed networks
	Clear caches
	Reload dynamic groups

	Plugins
	Install a plugin

	Basic administration of Rudder services
	Restart the agent of the node
	Restart the root rudder service
	Restart everything
	Restart only one component

	Password upgrade
	User management
	Configuration of the users using a XML file
	Generality
	Passwords

	Configuring an LDAP authentication provider for Rudder
	LDAP is only for authentication
	Enable LDAP authentication

	Authorization management
	Pre-defined roles
	Custom roles

	Going further

	Monitoring
	Monitoring Rudder itself
	Monitoring a Node
	Monitoring a Server

	Monitoring your configuration management

	Use Rudder inventory in other tools
	Export to a spreadsheet
	Use the inventory in Rundeck
	Use the inventory in Ansible

	Usecases
	Dynamic groups by operating system
	Library of preventive policies
	Standardizing configurations

	Advanced usage
	Node management
	Reinitialize policies for a Node
	Change the agent run schedule
	Installation of the Rudder Agent
	Static files
	Generated files
	Services
	Configuration

	Rudder Agent interactive
	Processing new inventories on the server
	Verify the inventory has been received by the Rudder Root Server
	Process incoming inventories
	Validate new Nodes
	Prepare policies for the Node

	Agent execution frequency on nodes
	Checking configuration (CFEngine)
	Inventory (FusionInventory)

	Password management
	Configuration of the postgres database password
	Configuration of the OpenLDAP manager password
	Configuration of the WebDAV access password

	Policy generation
	Regenerate now button

	Technique creation
	Recommended solution: Technique Editor
	Using the Technique Editor
	Logs

	Understanding how Technique Editor works
	Directory layout
	Technique Editor integration with Rudder
	Hooks

	Create Technique manually
	Prerequisite
	Define your objective
	Initialize your new Technique
	Define variables
	First test in the Rudder interface
	Implement the behavior
	Read in the variables from Rudder
	Add reporting

	REST API
	Default setup
	Rudder Authentication
	Apache access rules
	User for REST actions

	Status
	Promises regeneration
	Dynamic groups regeneration
	Technique library reload
	Archives manipulation
	Archiving:
	Listing:
	Restoring a given archive:
	Restoring the latest available archive (from a previously archived action, and so from a Git tag):
	Restoring the latest available commit (use Git HEAD):
	Downloading a ZIP archive

	Relay servers
	Installation procedure - On the relay
	Install Rudder agent
	Install the required dependencies and enable required modules
	Create the necessary directory and adjust the permissions
	Please create the appropriate file for your OS, and copy the following content in it

	Installation procedure - On the root server
	Set the node as a Rudder relay

	Result
	Adding nodes to a relay server

	Multiserver Rudder
	Preliminary steps
	Install rudder-relay-top
	Install rudder-db
	Install rudder-ldap
	Install rudder-web

	Server migration
	What files you need
	Handle configuration files
	Copy /var/rudder/configuration-repository
	Use Archive feature of Rudder

	Handle CFEngine keys
	Keep your CFEngine keys
	Change CFEngine keys

	On your nodes

	Mirroring Rudder repositories

	Handbook
	Database maintenance
	Automatic PostgreSQL table maintenance
	PostgreSQL database vacuum
	LDAP database reindexing

	Migration, backups and restores
	Backup
	Restore
	Migration

	Performance tuning
	Reports retention
	Apache HTTPd
	Jetty
	Java "Out Of Memory Error"
	Configure RAM allocated to Jetty
	Optimize PostgreSQL server
	Suggested values on an high end server
	Suggested values on a low end server

	CFEngine
	Rsyslog
	Maximum number of file descriptors
	Network backlog
	Conntrack table

	Troubleshooting and common issues
	Some reports are in "No Answer"
	If you get no reports at all for the Node
	If you get incomplete reporting for the Node

	Communication issues between agent and server
	DNS issues
	Inventory issues

	Technique editing
	Database is using too much space

	Reference
	Rudder Server data workflow
	Rudder Agent workflow
	Request data from Rudder Server
	Launch processes
	Identify Rudder Root Server
	Inventory
	Syslog
	Apply Directives

	Configuration files for a Node
	Packages organization
	Packages
	Software dependencies and third party components

	Configuration files for Rudder Server
	Generic methods
	Command
	command_execution
	command_execution_result

	Directory
	directory_check_exists
	directory_create

	File
	file_check_FIFO_pipe
	file_check_block_device
	file_check_character_device
	file_check_exists
	file_check_hardlink
	file_check_regular
	file_check_socket
	file_check_symlink
	file_check_symlinkto
	file_copy_from_local_source
	file_copy_from_local_source_recursion
	file_copy_from_remote_source
	file_copy_from_remote_source_recursion
	file_create
	file_create_symlink
	file_create_symlink_enforce
	file_create_symlink_force
	file_download
	file_enforce_content
	file_ensure_block_in_section
	file_ensure_block_present
	file_ensure_key_value
	file_ensure_key_value_present_in_ini_section
	file_ensure_keys_values
	file_ensure_line_present_in_ini_section
	file_ensure_line_present_in_xml_tag
	file_ensure_lines_absent
	file_ensure_lines_present
	file_from_template
	file_from_template_mustache
	file_from_template_type
	file_remove
	file_replace_lines
	file_template_expand

	Group
	group_absent
	group_present

	Http
	http_request_check_status_headers
	http_request_content_headers

	Logger
	logger_rudder

	Package
	package_check_installed
	package_install
	package_install_version
	package_install_version_cmp
	package_install_version_cmp_update
	package_remove
	package_verify
	package_verify_version

	Permissions
	permissions
	permissions_dirs
	permissions_dirs_recurse
	permissions_recurse
	permissions_type_recursion

	Schedule
	schedule_simple
	schedule_simple_catchup
	schedule_simple_nodups
	schedule_simple_stateless

	Service
	service_action
	service_check_running
	service_check_running_ps
	service_check_started_at_boot
	service_ensure_running
	service_ensure_running_path
	service_ensure_started_at_boot
	service_ensure_stopped
	service_reload
	service_restart
	service_restart_if
	service_start
	service_stop

	User
	user_absent
	user_create

	Variable
	variable_dict
	variable_dict_from_file
	variable_iterator
	variable_iterator_from_file
	variable_string
	variable_string_from_file

	Appendix: Glossary

