
Rudder User Documentation i

Rudder User Documentation

Rudder User Documentation ii

Copyright © 2011-2013 Normation SAS

Rudder User Documentation by Normation is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
Permissions beyond the scope of this license may be available at normation.com.

Rudder User Documentation iii

COLLABORATORS

TITLE :

Rudder User Documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY Jonathan Clarke,
Nicolas Charles,

Fabrice
Flore-Thebault,
Matthieu Cerda,
Nicolas Perron,
Arthur Anglade,

Vincent Membré, and
François Armand

March 2014

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.3.0 October 2011 First release of the Rudder User Documentation. NC, JC, FFT

2.4.0 December 2012 Rudder User Documentation for 2.4 release of
Rudder.

NC, JC, FFT

2.5.0 January 2013 Rudder User Documentation for 2.5 release of
Rudder.

AA, FA, FFT, JC, NC,
NP, MC, VM

2.6.0 April 2013 Rudder User Documentation for 2.8 release of
Rudder.

AA, FA, FFT, JC, NC,
NP, MC, VM

2.8.0 July 2013 Rudder User Documentation for 2.8 release of
Rudder.

AA, FA, FFT, JC, NC,
NP, MC, VM

Rudder User Documentation iv

Contents

1 Online version 1

2 Introduction 2

2.1 Concepts . 2

2.1.1 Rudder functions . 2

2.1.2 Asset management concepts . 2

2.1.2.1 New Nodes . 2

2.1.2.2 Search Nodes . 2

2.1.2.3 Groups of Nodes . 3

2.1.3 Configuration management concepts . 3

2.2 Rudder components . 4

2.3 Specifications for Rudder Nodes . 5

2.4 Specifications for Rudder Root Server . 5

2.4.1 Hardware specifications . 5

2.4.2 Supported Operating Systems . 6

2.4.3 Packages . 6

2.4.4 Software dependencies and third party components . 8

2.5 Configure the network . 9

2.5.1 Mandatory flows . 9

2.5.2 Optional flows . 9

2.5.3 DNS - Name resolution . 9

3 Install Rudder Server 10

3.1 Install Rudder Root server on Debian or Ubuntu . 10

3.1.1 Add the Rudder packages repository . 10

3.1.2 Java on Debian/Ubuntu . 11

3.1.3 Install your Rudder Root Server . 11

3.1.4 Compatibility with RHEL/CentOS 5 and syslogd . 11

3.2 Install Rudder Root server on SLES . 12

3.2.1 Configure the package manager . 12

3.2.2 Add the Rudder packages repository . 12

Rudder User Documentation v

3.2.3 Install your Rudder Root Server . 12

3.3 Install Rudder Root server on RedHat or CentOS . 12

3.3.1 Java on RHEL/CentOS . 12

3.3.2 Add the Rudder packages repository . 12

3.3.3 Install your Rudder Root Server . 13

3.4 Initial configuration of your Rudder Root Server . 14

3.5 Validate the installation . 14

4 Install Rudder Agent 15

4.1 Install Rudder Agent on Debian or Ubuntu . 15

4.2 Install Rudder Agent on RedHat or CentOS . 16

4.3 Install Rudder Agent on SLES . 16

4.4 Configure and validate . 17

4.4.1 Configure Rudder Agent . 17

4.4.2 Start Rudder Agent: . 17

4.4.3 Validate new Node . 17

4.4.3.1 Force Rudder Agent execution . 17

5 Upgrade Rudder 18

5.1 Caution cases . 18

5.1.1 Upgrading from Rudder 2.8 or 2.9 . 18

5.1.2 Upgrading from Rudder 2.6 or 2.7 . 18

5.1.3 Known bugs . 19

5.2 Upgrade Rudder on Debian or Ubuntu . 19

5.3 Upgrade Rudder on RedHat or CentOS . 19

5.4 Upgrade Rudder on SLES . 20

6 Rudder Web Interface 21

6.1 Authentication . 21

6.2 Presentation of Rudder Web Interface . 21

6.2.1 Rudder Home . 21

6.2.2 Node Management . 22

6.2.3 Configuration Management . 23

6.2.4 Administration . 24

6.3 Units supported as search parameters . 24

6.3.1 Bytes and multiples . 24

6.3.2 Convenience notation . 24

6.3.3 Supported units . 25

Rudder User Documentation vi

7 Node Management 26

7.1 Node Inventory . 26

7.2 Accept new Nodes . 26

7.3 Search Nodes . 27

7.3.1 Quick Search . 27

7.3.2 Advanced Search . 27

7.4 Group of Nodes . 28

8 Configuration Management 29

8.1 Techniques . 29

8.1.1 Concepts . 29

8.1.2 Manage the Techniques . 29

8.1.3 Available Techniques . 30

8.1.3.1 Application management . 30

8.1.3.2 Distributing files . 30

8.1.3.3 File state configuration . 30

8.1.3.4 System settings: Miscellaneous . 30

8.1.3.5 System settings: Networking . 30

8.1.3.6 System settings: Process . 31

8.1.3.7 System settings: Remote access . 31

8.1.3.8 System settings: User management . 31

8.2 Directives . 31

8.3 Rules . 32

8.4 Parameters . 32

8.5 Compliance . 32

8.6 Validation workflow in Rudder . 33

8.6.1 What is a Change request ? . 34

8.6.1.1 Change request status . 34

8.6.1.2 Change request management page . 35

8.6.1.3 Change request detail page . 35

8.6.2 How to create a Change request ? . 37

8.6.3 How to validate a Change request ? . 38

8.6.3.1 Roles . 38

8.6.3.2 Self Validations . 39

8.6.4 Change request and conflicts . 39

8.6.5 Notifications: . 39

8.6.5.1 Pending change requests . 39

8.6.5.2 Change already proposed on Rule/Directive/Group . 40

Rudder User Documentation vii

9 Administration 41

9.1 Archives . 41

9.1.1 Archive usecases . 41

9.1.1.1 Changes testing . 41

9.1.1.2 Changes qualification . 41

9.1.2 Concepts . 41

9.1.3 Archiving . 42

9.1.4 Importing configuration . 42

9.1.5 Deploy a preconfigured instance . 43

9.2 Event Logs . 43

9.3 Policy Server . 43

9.3.1 Configure allowed networks . 43

9.3.2 Clear caches . 43

9.3.3 Reload dynamic groups . 43

9.4 Plugins . 44

9.4.1 Install a plugin . 44

9.5 Basic administration of Rudder services . 44

9.5.1 Restart the agent of the node . 44

9.5.2 Restart the root rudder service . 44

9.5.2.1 Restart everything . 44

9.5.2.2 Restart only one component . 44

9.6 Technique upgrade . 45

9.6.1 Initial installation . 45

9.6.2 Upgrade . 45

9.6.2.1 Upgrading the Technique library . 45

9.7 Password upgrade . 46

9.8 User management . 46

9.8.1 Configuration of the users using a XML file . 46

9.8.1.1 Generality . 46

9.8.1.2 Passwords . 46

9.8.2 Configuring an LDAP authentication provider for Rudder . 47

9.8.2.1 LDAP is only for authentication . 47

9.8.2.2 Enable LDAP authentication . 48

9.8.3 Authorization management . 48

9.8.3.1 Pre-defined roles . 48

9.8.3.2 Custom roles . 48

9.8.4 Going further . 49

Rudder User Documentation viii

10 Usecases 50

10.1 Dynamic groups by operating system . 50

10.2 Library of preventive policies . 50

10.3 Standardizing configurations . 50

11 Advanced usage 51

11.1 Node management . 51

11.1.1 Reinitialize policies for a Node . 51

11.1.2 Installation of the Rudder Agent . 51

11.1.2.1 Static files . 51

11.1.2.2 Generated files . 52

11.1.2.3 Services . 52

11.1.2.4 Configuration . 52

11.1.3 Rudder Agent interactive . 52

11.1.4 Processing new inventories on the server . 53

11.1.4.1 Verify the inventory has been received by the Rudder Root Server 53

11.1.4.2 Process incoming inventories . 53

11.1.4.3 Validate new Nodes . 53

11.1.4.4 Prepare policies for the Node . 53

11.1.5 Agent execution frequency on nodes . 54

11.1.5.1 Checking configuration (CFEngine) . 54

11.1.5.2 Inventory (FusionInventory) . 55

11.2 Password management . 55

11.2.1 Configuration of the postgres database password . 55

11.2.2 Configuration of the OpenLDAP manager password . 55

11.2.3 Configuration of the WebDAV access password . 56

11.3 Policy generation . 56

11.3.1 Regenerate now button . 56

11.4 Technique creation . 56

11.4.1 Prequisites . 57

11.4.2 Define your objective . 57

11.4.3 Initialize your new Technique . 57

11.4.3.1 Define variables . 58

11.4.3.2 First test in the Rudder interface . 58

11.4.4 Implement the behavior . 58

11.4.4.1 Read in the variables from Rudder . 58

11.4.4.2 Add reporting . 58

11.5 REST API . 59

11.5.1 Default setup . 59

Rudder User Documentation ix

11.5.1.1 Rudder Authentication . 59

11.5.1.2 Apache access rules . 59

11.5.1.3 User for REST actions . 59

11.5.2 Status . 59

11.5.3 Promises regeneration . 60

11.5.4 Dynamic groups regeneration . 60

11.5.5 Technique library reload . 60

11.5.6 Archives manipulation . 60

11.5.6.1 Archiving: . 60

11.5.6.2 Listing: . 60

11.5.6.3 Restoring a given archive: . 60

11.5.6.4 Restoring the latest available archive (from a previously archived action, and so from a Git tag): 61

11.5.6.5 Restoring the latest available commit (use Git HEAD): . 61

11.5.6.6 Downloading a ZIP archive . 61

11.6 Relay servers . 61

11.6.1 Installation procedure - On the relay . 62

11.6.1.1 Install Rudder agent . 62

11.6.1.2 Install the required dependencies and enable required modules 62

11.6.1.3 Create the necessary directory and adjust the permissions . 62

11.6.1.4 Please create the appropriate file for your OS, and copy the following content in it 63

11.6.2 Installation procedure - On the root server . 64

11.6.2.1 Set the node as a Rudder relay . 64

11.6.3 Result . 64

11.6.4 Adding nodes to a relay server . 65

11.7 Server migration . 65

11.7.1 What files you need . 65

11.7.2 Handle configuration files . 65

11.7.2.1 Copy /var/rudder/configuration-repository . 65

11.7.2.2 Use Archive feature of Rudder . 66

11.7.3 Handle CFEngine keys . 66

11.7.3.1 Keep your CFEngine keys . 66

11.7.3.2 Change CFEngine keys . 66

11.7.4 On your nodes . 66

11.8 Mirroring Rudder repositories . 66

Rudder User Documentation x

12 Reference 67

12.1 Rudder Server data workflow . 67

12.2 Rudder Agent workflow . 70

12.2.1 Request data from Rudder Server . 72

12.2.2 Launch processes . 72

12.2.3 Identify Rudder Root Server . 72

12.2.4 Inventory . 72

12.2.5 Syslog . 72

12.2.6 Apply Directives . 72

12.3 Configuration files for a Node . 72

12.4 Configuration files for Rudder Server . 73

13 Handbook 81

13.1 Database maintenance . 81

13.1.1 Automatic PostgreSQL table maintenance . 81

13.1.2 PostgreSQL database vacuum . 82

13.1.3 LDAP database reindexing . 82

13.2 Migration, backups and restores . 82

13.2.1 Backup . 82

13.2.2 Restore . 83

13.2.3 Migration . 84

13.3 Application tuning . 84

13.3.1 Apache HTTPd . 84

13.3.2 Jetty . 84

13.3.3 Java "Out Of Memory Error" . 84

13.3.4 Configure RAM allocated to Jetty . 84

13.3.5 Optimize PostgreSQL server . 85

13.3.5.1 Suggested values on an high end server . 85

13.3.5.2 Suggested values on a low end server . 86

13.3.6 CFEngine . 86

14 Appendix: Glossary 87

Rudder User Documentation xi

List of Figures

2.1 Concepts diagram . 4

2.2 Rudder packages and their dependencies . 7

6.1 Rudder Homepage . 22

6.2 Node Management welcome screen . 23

6.3 Configuration Management welcome screen . 23

6.4 Administration welcome screen . 24

8.1 Reports . 33

11.1 Generate policy workflow . 54

11.2 Rudder relay node . 64

12.1 Rudder data workflow . 69

12.2 Rudder Agent workflow . 71

Rudder User Documentation xii

List of Tables

6.1 Units supported by Rudder search engine . 25

9.1 Hashed passwords algorithms list . 47

Rudder User Documentation 1 / 89

Chapter 1

Online version

You can also read the Rudder User Documentation on the Web.

http://rudder-project.org

Rudder User Documentation 2 / 89

Chapter 2

Introduction

This chapter presents the main concepts and the architecture of Rudder: what are the server types and their interactions.

Reading this chapter will help you to learn the terms used, and to prepare the deployment of a Rudder installation.

2.1 Concepts

2.1.1 Rudder functions

Rudder addresses two main functions:

1. Configuration management;

2. Asset management;

The configuration management function relies on the asset management function. The purpose of the asset management function
is to identify Nodes and some of their characteristics which can be useful to perform configuration management. The purpose of
configuration management is to apply rules on Nodes. A rule can include the installation of a tool, the configuration of a service,
the execution of a daemon, etc. To apply rules on Nodes, Rudder uses the information produced by the asset management
function to identify these Nodes and evaluate some specific information about them.

2.1.2 Asset management concepts

Each Node is running a Rudder Agent, which is sending regularly an inventory to the Rudder Server.

2.1.2.1 New Nodes

Following the first inventory, Nodes are placed in a transit zone. You can then view the detail of their inventory, and accept the
final Node in the Rudder database if desired. You may also reject the Node, if it is not a machine you would like to manage with
Rudder.

2.1.2.2 Search Nodes

An advanced search engine allows you to identify the required Nodes (by name, IP address, OS, versions, etc.)

Rudder User Documentation 3 / 89

2.1.2.3 Groups of Nodes

You will have to create sets of Nodes, called groups. These groups are derived from search results, and can either be static or a
dynamic :

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

2.1.3 Configuration management concepts

We adopted the following terms to describe the configurations in Rudder:

Technique This is a configuration skeleton, adapted to a function or a particular service (e.g. DNS resolver configuration). This
skeleton includes the configuration logic for this function or service, and can be set according to a list of variables (in the
same example: IP addresses of DNS servers, the default search box, . . .)

Directive This is an instance of a Technique, which allows to set values for the parameters of the latter. Each Directive can have
a unique name. A Directive should be completed with a short and a long description, and a collection of parameters for the
variables defined by the Technique.

Rule It is the application of one or more directives to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

Applied Policy This is the result of the conversion of a Policy Instance into a set of CFEngine Promises for a particular Node.

As illustrated in this summary diagram, the rules are linking the functions of inventory management and configuration manage-
ment.

Rudder User Documentation 4 / 89

Figure 2.1: Concepts diagram

2.2 Rudder components

The Rudder infrastructure uses three types of machines:

Rudder Node A Node is client computer managed by Rudder. To be managed, a Node must first be accepted as an authorized
node.

Rudder Root Server This is the core of the Rudder infrastructure. This server must be a dedicated machine (either virtual of
physical), and contains the main application components: the web interface, databases, configuration data, logs. . .

Rudder Relay Server Relay servers are an optional component in a Rudder architecture. They can act as a proxy for all network
communications between Rudder agents and a Rudder server. This enables them to be installed in a remote datacenter, or
inside a restricted network zone, to limit the network flows required to use Rudder.

Rudder User Documentation 5 / 89

2.3 Specifications for Rudder Nodes

The following operating systems are supported for Rudder Nodes and packages are available for these platforms:

• Debian GNU/Linux 5 (Lenny)

• Debian GNU/Linux 6 (Squeeze)

• Debian GNU/Linux 7 (Wheezy)

• Microsoft Windows Server 2000

• Microsoft Windows Server 2003

• Microsoft Windows Server 2008

• Red Hat Enterprise Linux (RHEL) / CentOS 3

• Red Hat Enterprise Linux (RHEL) / CentOS 5

• Red Hat Enterprise Linux (RHEL) / CentOS 6

• SuSE Linux Enterprise Server (SLES) 10 SP3

• SuSE Linux Enterprise Server (SLES) 11 SP1

• Ubuntu 10.04 LTS (lucid)

• Ubuntu 12.04 LTS (precise)

• Ubuntu 12.10 (quantal)

Windows Nodes
Installing Rudder on Windows requires the commercial version of CFEngine (named Nova). Hence, as a starting point, we
suggest that you only use Linux machines. Once you are accustomed to Rudder, contact Normation to obtain a demo version
for Windows platforms.

Unsupported Operating Systems
It is possible to use Rudder on other platforms than the ones listed here. However, we haven’t tested the application
on them, and can’t currently supply any packages for them. Moreover, the Techniques are likely to fail. If you wish to
try Rudder on other systems, please contact us.

2.4 Specifications for Rudder Root Server

2.4.1 Hardware specifications

A dedicated server is strongly recommended to deploy Rudder Root Server.

Your Rudder Root Server can be either a physical or a virtual machine.

Rudder Server is running on both 32 and 64 bit versions of every supported Operating System.

Any CPU provided on commodity servers available nowadays should be fine. On a VM server, you should dedicate at least one
core to the Rudder server.

The amount of RAM needed by the server depends mainly on the number of managed nodes.

Rudder User Documentation 6 / 89

The base requirement is to have a server with 2GB of RAM. On production environment, when managing more than 50 nodes, it
is recommended to dedicate at least 4GB of RAM to the server.

Then, the default rule is to add 1GB of RAM by 500 nodes above 1000 nodes, so for example for 1500-2000 nodes, you need at
minimum 6GB of RAM, and for 2500-3000 you need 8GB.

The RAM given to the web application must be augmented as explained in the chapter about webapplication RAM configuration
so that it is the half of the RAM of the server, rounded down to the nearest GB. For example, if the server has 5GB of RAM, 2GB
should be used.

The PostgresSQL database is the main storage user. The disk space necessary for the database can be estimated by counting
around 150 to 400kB of storage used by Directive, by Node and by day of storage of node’s execution reports (default to 30
days):

The PostgresSQL memory configuration must be customized for large installation accordingly to the chapter Optimize Post-
greSQL Server.

max_space = number of Directives * number of Nodes * archive.TTL * 400 kB

The retention duration for node’s execution reports can be configured in /opt/rudder/etc/rudder-web.properties
file with the options:

rudder.batch.reportscleaner.archive.TTL=30

rudder.batch.reportscleaner.delete.TTL=90

For example, an installation managing 150 nodes, with an average of 100 Directives by node, and keeping execution reports for
one week should anticipate the use of between 20Go and 60Go of disk size for PostgreSQL.

2.4.2 Supported Operating Systems

The following operating systems are supported as a Root server:

• Debian GNU/Linux 5 (Lenny)

• Debian GNU/Linux 6 (Squeeze)

• Debian GNU/Linux 7 (Wheezy)

• Red Hat Enterprise Linux (RHEL) / CentOS 6

• SuSE Linux Enterprise Server (SLES) 11 SP1

• Ubuntu server 12.04 LTS (Precise)

• Ubuntu server 12.10 (Quantal)

2.4.3 Packages

Rudder components are distributed as a set of packages.

Rudder User Documentation 7 / 89

Figure 2.2: Rudder packages and their dependencies

rudder-webapp Package for the Rudder Web Application. It is the graphical interface for Rudder.

rudder-inventory-endpoint Package for the inventory reception service. It has no graphical interface. This service is
using HTTP as transport protocol. It receives an parses the files sent by FusionInventory and insert the valuable data into
the LDAP database.

rudder-jetty Application server for rudder-webapp and rudder-inventory-endpoint. Both packages are
written in Scala. At compilation time, they are converted into .war files. They need to be run in an application server.
Jetty is this application server. It depends on a compatible Java Runtime Environment. It can be either Oracle Java JRE or
OpenJDK 7 JRE.

rudder-techniquess Package for the Techniques. They are installed in /opt/rudder/configuration-reposi
tory/techniques. At runtime, the Techniques are copied into a git repository in /var/rudder. Therefore, the
package depends on the git package.

rudder-inventory-ldap Package for the database containing the inventory and configuration information for each pend-
ing and validated Node. This LDAP database is build upon OpenLDAP server. The OpenLDAP engine is contained in the
package.

rudder-reports Package for the database containing the logs sent by each Node and the reports computed by Rudder.
This is a PostgreSQL database using the PostgreSQL engine of the distribution. The package has a dependency on the
postgresl package, creates the database named rudder and installs the inialisation scripts for that database in /opt/
rudder/etc/postgresql/*.sql.

rudder-cfengine-community Package for the CFEngine server. This server delivers to the Nodes the Applied Policies
converted into CFEngine promises.

rudder-server-root Package to ease installation of all Rudder services. This package depends on all above packages. It
also

Rudder User Documentation 8 / 89

• installs the Rudder configuration script:

/opt/rudder/bin/rudder-init.sh

• installs the initial promises for the Root Server in:

/opt/rudder/share/initial-promises/

• installs the init scripts (and associated default file):

/etc/init.d/rudder-server-root

• installs the logrotate configuration:

/etc/logrotate.d/rudder-server-root

rudder-agent One single package integrates everything needed for the Rudder Agent. It contains CFEngine Commmunity,
FusionInventory, and the initial promises for a Node. It also contains an init script:

/etc/init.d/rudder-agent

The rudder-agent package depends on a few common libraries and utilities:

• OpenSSL

• libpcre

• libdb (4.6 on Debian)

• uuidgen (utility from uuid-runtime package on Debian)

2.4.4 Software dependencies and third party components

The Rudder Web application requires the installation of Apache 2 httpd, Oracle Java 6 JRE or OpenJDK 7 JRE, and cURL; the
LDAP Inventory service needs rsyslog and the report service requires PostgreSQL.

When available, packages from your distribution are used. These packages are:

Apache The Apache Web server is used as a proxy to give HTTP access to the Web Application. It is also used to give writable
WebDAV access for the inventory. The Nodes send their inventory to the WebDAV service, the inventory is stored in /
var/rudder/inventories/incoming.

PostgreSQL The PostgreSQL database is used to store logs sent by the Nodes and reports generated by Rudder.

rsyslog and rsyslog-pgsql The rsyslog server is receiving the logs from the nodes and insert them into a PostgreSQL database.
On SLES, the rsyslog-pgsql package is not part of the distribution, it can be downloaded alongside Rudder packages.

Oracle Java JRE or OpenJDK 7 JRE The Java runtime is needed by the Jetty application server. On Debian, the package
from the distribution is used. On SLES, the package must be downloaded from Oracle website.

curl This package is used to send inventory files from /var/rudder/inventories/incoming to the Rudder Endpoint.

git The package is not a dependency, but its installation is recommended. The running Techniques Library is maintained as a git
repository in /var/rudder/configuration-repository/techniques. It can be useful to have git installed
on the system for maintenance purpose.

Rudder User Documentation 9 / 89

2.5 Configure the network

2.5.1 Mandatory flows

The following flows from the Nodes to the Rudder Root Server has to be allowed:

Port 5309, TCP CFEngine communication port, used to communicate the policies to the rudder nodes.

Port 80, TCP, for nodes HTTP communication port, used to send inventory and fetch the id of the Rudder Server.

Port 514, TCP Syslog port, used to centralize reports.

Open the following flow from the clients desktop to the Rudder Root Server:

Port 443, TCP, for users HTTPS communication port, used by the users to access to the web interface.

2.5.2 Optional flows

These flows are used to add features to Rudder:

CFEngine Nova Managing Windows machines requires the commercial version of CFEngine, called Nova. It needs to open
the port 5308 TCP from the Node to the Rudder Root Server.

2.5.3 DNS - Name resolution

Currently, Rudder relies on the Node declared hostnames to identify them. So it is required that each Node hostname can be
resolved to its IP address that will be used to contact the Rudder Server. We are aware that it is far from being ideal in most cases
(no DNS environment, private sub-networks, NAT, etc. . .), and we are currently working on an alternative solution.

If you do not have the wished name resolution, we advise that you should fill the IP address and hostname of the /etc/hosts
file of the Rudder Root Server.

Similarly, each Rudder Node must be able to resolve the Rudder Root Server hostname given in the step described in Initial
configuration of your Rudder Root Server.

Rudder User Documentation 10 / 89

Chapter 3

Install Rudder Server

This chapter covers the installation of a Rudder Root Server, from the specification of the underlying server, to the initial setup
of the application.

Before all, you need to setup a server according to the server specifications. You should also configure the network. These topics
are covered in the Architecture chapter.

Ideally, this machine should have Internet access, but this is not a strict requirement.

As Rudder data can grow really fast depending on your number of managed nodes and number of rules, it is advised to separate
partitions to prevent your /var getting full and break your system. Special attention should be given to:

/var/lib/pgsql Or wherever is located your postgresql database. Can grow by several GB per day. Please see the database
maintenance chapter for more details about this

/var/rudder Contains most of your server information, LDAP database, etc.. Slower growth over time.

/var/log/rudder Reports logs can easily grow to 1.5GB per day.

3.1 Install Rudder Root server on Debian or Ubuntu

3.1.1 Add the Rudder packages repository

Run the following commands as root:

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 474A19E8
echo "deb http://www.rudder-project.org/apt-2.10/ $(lsb_release -cs) main" > /etc/apt/ ←↩

sources.list.d/rudder.list
aptitude update

This will add the GPG key used to sign the Rudder repository, then add the package repository itself and finally update the local
package cache.

Tip
If the HTTP Keyserver Protocol (11371/tcp) port is blocked on your network you can use this alternate command:

wget --quiet -O- "http://keyserver.ubuntu.com/pks/lookup?op=get&search=0x474A19E8" | sudo ←↩
apt-key add -

Rudder User Documentation 11 / 89

3.1.2 Java on Debian/Ubuntu

The Rudder Root server needs a compatible Java Runtime Environment to run. In most cases, this will be installed automatically
thanks to packaging dependencies, however in some cases manual installation is required.

On Debian Wheezy (7) and above and Ubuntu Precise (12.04) and above, the available package is OpenJDK 7 JRE, namely
openjdk-7-jre. It will be installed automatically as a dependency of the Rudder packages, and does not require the non-free
component.

On Debian Squeeze (6) and Debian Lenny (5), the available package is Oracle Java 6 JRE, namely sun-java-6-jre, which is
in the non-free component. You must make sure this is enabled in your apt sources. Check that /etc/apt/sources.list
contains the following lines:

deb http://ftp.fr.debian.org/debian/ squeeze main contrib non-free
deb http://security.debian.org/ squeeze/updates main contrib non-free

Tip
Your mirror may differ, ftp.fr.debian.org is only an example. Also, please adapt the distribution name if needed
(squeeze could be replaced by lenny).

On Ubuntu Natty (11.04) and previous Ubuntu versions, you will have to install Java yourself as the packaging of the Oracle
JVM is now restricted by Oracle™ and Rudder is not compatible with OpenJDK 6, which is the only available JDK from Ubuntu.
See http://www.java.com/fr/download/ to get Oracle’s JVM.

3.1.3 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

aptitude install rudder-server-root

Now jump to the next section to configure your server.

Note
If Oracle Java 6 JRE is installed (usually on Debian Lenny (5) or Squeeze (6) only), you will be asked to accept the license of
the product during installation.

3.1.4 Compatibility with RHEL/CentOS 5 and syslogd

Warning
For users running the Rudder server on Ubuntu Server 12.04 or later, any nodes running syslogd (not syslog-ng or
rsyslog) will fail to send any reports about the configuration rules they have applied. This is the case by default on
RHEL/CentOS 5, but not on any other supported platforms.
Rudder will apply rules on nodes but will never get reports from those using syslogd. Therefore Rudder will not be able
to calculate compliance.
Several workarounds are available to fix this:

1. Install another syslog server on your nodes, such as rsyslog or syslog-ng.

2. Change the rsyslog configuration on the Rudder server (running Ubuntu 12.04 or later) to use port 514 and
authorize this in the rsyslog configuration.

3. Setup iptables on the node to send syslog traffic to the correct port on your Rudder server.

4. Use a different OS for your Rudder server that Ubuntu Server 12.04 or later.

http://www.java.com/fr/download/

Rudder User Documentation 12 / 89

3.2 Install Rudder Root server on SLES

3.2.1 Configure the package manager

Ensure that the zypper package manager is configured, and install the required packages: rsyslog, rsyslog-pgsql and
Oracle Java 6 JRE or OpenJDK 7 JRE. rsyslog and rsyslog-pgsql are downloadable alongside Rudder and Java is
available through Oracle’s website: http://www.java.com.

3.2.2 Add the Rudder packages repository

Run the following commands as root:

zypper ar -n "Normation RPM Repositories" http://www.rudder-project.org/rpm-2.10/ ←↩
SLES_11_SP1/ Normation

zypper up

This will add the Rudder package repository, then update the local package cache.

3.2.3 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

zypper in rudder-server-root

Now jump to the next section to configure your server.

Tip
If you want to manage the Techniques Library with git on a SLES based system, you should download the SDK DVD and install
git-core using yast2 or zypper, or get the RPM using another channel.

3.3 Install Rudder Root server on RedHat or CentOS

3.3.1 Java on RHEL/CentOS

The Rudder Root server needs a compatible Java Runtime Environment to run.

On RHEL/CentOS 6, the available package compatible with Rudder server is java-1.7.0-openjdk but Rudder is also
compatible with Oracle JRE 1.6 or later.

Oracle JRE 1.6, Oracle JRE 1.7 and OpenJDK 1.6 aren’t provided by the same virtual package on RHEL/CentOS 6 than Open-
JDK 1.7. Besides, only OpenJDK 1.7 is provided by default on RHEL/CentOS contrary to Oracle JRE.

This is why even if Rudder Server would work with Oracle JRE 1.6 or 1.7, the dependencies will not be resolved with them.

3.3.2 Add the Rudder packages repository

Run the following command as root:

RedHat/CentOS 6:

http://www.java.com

Rudder User Documentation 13 / 89

echo "[Rudder_2.10]
name=Rudder 2.10 Repository
baseurl=http://www.rudder-project.org/rpm-2.10/RHEL_6/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.10/RHEL_6/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

RedHat/CentOS 5:

echo "[Rudder_2.10]
name=Rudder 2.10 Repository
baseurl=http://www.rudder-project.org/rpm-2.10/RHEL_5/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.10/RHEL_5/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

3.3.3 Install your Rudder Root Server

To begin the installation, you should simply install the rudder-server-root metapackage, which will install the required
components:

yum install rudder-server-root

Now jump to the next section to configure your server.

Warning
Rudder doesn’t support SELinux yet (see http://www.rudder-project.org/redmine/issues/2882), so you should set it to
be permissive with this command:

setenforce 0

Warning
The webapp runs on HTTPS/443 port so you need to allow access to your server on this port. The file to edit is
/etc/sysconfig/iptables and should look like

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
allow SSH access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
allow HTTP access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT
allow HTTPS access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

The important line is

allow HTTPS access
-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT

http://www.rudder-project.org/redmine/issues/2882

Rudder User Documentation 14 / 89

3.4 Initial configuration of your Rudder Root Server

After the installation, you have to configure some system elements, by launching the following initialisation script:

/opt/rudder/bin/rudder-init.sh

This script will ask you to fill in the following details:

Hostname The hostname that can be used by the client Nodes to reach the server. It is used to configure the web interface (so
it will be the URL you’ll use to access it), and to configure on the client Node how to reach the root server.

Allowed networks A list of IP networks authorized to connect to the server. We recommend that you specify all the networks
of your infrastructure. The syntax is the standard network/mask notation, for instance 192.168.0.0/24 or 10.0.0.
0/8. To add several networks, first type the first network, then press the return key - the script will ask if you wish to add
some more networks.

Server IP The IP address of the Rudder Root Server on which the CFEngine daemon should be contacted by all nodes. If your
root server has only one IP address, you should nevertheless type it here.

Demo data Type "yes" if you wish to have the local database filed with demo data. It is usually not recommended if you wish
to add your own Nodes.

Reset initial promises On an existing Rudder Server, you can remove all promises generated by Rudder and replace them by
the standard initialisation promises. The major effect of this option is that all Nodes won’t be able to fetch their promises
until the next regeneration by Rudder.

Tip
In case of typing error, or if you wish to reconfigure these elements, you can execute this script again as many times as you
want.

3.5 Validate the installation

Once all these steps have been completed, use your web browser to go to the URL given on the step described in the section
about initial configuration.

You should see a loading, then a login screen. Only two demo accounts are configured, without any right restriction as of now.

Files installed by the application

/etc System-wide configuration files are stored here: init scripts, configuration for apache, logrotate and rsyslog.

/opt/rudder Non variable application files are stored here.

/opt/rudder/etc Configuration files for Rudder services are stored here.

/var/log/rudder Log files for Rudder services are stored here.

/var/rudder Variable data for Rudder services are stored here.

/var/rudder/cfengine-community Data for CFEngine Community are stored here.

/var/rudder/configuration-repository/techniques Techniques are stored here.

/var/cfengine Data for CFEngine Nova are stored here.

/usr/share/doc/rudder* Documentation about Rudder packages.

Rudder User Documentation 15 / 89

Chapter 4

Install Rudder Agent

This chapter gives a general presentation of the Rudder Agent, and describes the different configuration steps to deploy the
Rudder agent on the Nodes you wish to manage. Each Operating System has its own set of installation procedures.

The machines managed by Rudder are called Nodes, and can either be physical or virtual. For a machine to become a managed
Node, you have to install the Rudder Agent on it. The Node will afterwards register itself on the server. And finally, the Node
should be acknowledged in the Rudder Server interface to become a managed Node. For a more detailed description of the
workflow, please refer to the Advanced Usage part of this documentation.

Components
This agent contains the following tools:

1. The community version of CFEngine, a powerful open source configuration management tool.

2. FusionInventory , an inventory software.

3. An initial configuration set for the agent, to bootstrap the Rudder Root Server access.

These components are recognized for their reliability and minimal impact on performances. Our tests showed their memory
consumption is usually under 10 MB of RAM during their execution. So you can safely install them on your servers.
We grouped all these tools in one package, to ease the Rudder Agent installation.
To get the list of supported Operating systems.please refer to <<Nodes_supported_OS, the list of supported Operating Systems
for the Nodes>>.

4.1 Install Rudder Agent on Debian or Ubuntu

Validate the content of the Rudder project repository by importing the GPG key used to sign it:

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 474A19E8

If your HTTP Keyserver Protocol (11371/tcp) is blocked you can use an alternate command:

root@rudder-server:~# wget --quiet -O- "http://keyserver.ubuntu.com/pks/lookup?op=get& ←↩
search=0x474A19E8" | sudo apt-key add -

Add Rudder project repository:

• on Debian Squeeze:

sudo tee /etc/apt/sources.list.d/rudder.list <<EOF
deb http://www.rudder-project.org/apt-2.10/ $(lsb_release -cs) main
EOF

http://www.cfengine.com
http://fusioninventory.org/

Rudder User Documentation 16 / 89

• on Ubuntu 12.04 and following, or Debian wheezy and following:

sudo apt-add-repository http://www.rudder-project.org/apt-2.10/

Update your local package database to retrieve the list of packages available on our repository:

sudo aptitude update

Install the rudder-agent package:

sudo aptitude install rudder-agent

4.2 Install Rudder Agent on RedHat or CentOS

Download the package applicable to your version of RedHat/CentOS and to its architecture on

http://www.rudder-project.org/rpm-2.10/RHEL_5/
http://www.rudder-project.org/rpm-2.10/RHEL_6/

Or you can define a yum repository for RedHat/CentOS 6:

$ echo "[Rudder_2.10]
name=Rudder 2.10 Repository
baseurl=http://www.rudder-project.org/rpm-2.10/RHEL_6/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.10/RHEL_6/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Or for RedHat/CentOS 5:

$ echo "[Rudder_2.10]
name=Rudder 2.10 Repository
baseurl=http://www.rudder-project.org/rpm-2.10/RHEL_5/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.10/RHEL_5/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Install the package:

rpm -Uhv rudder-agent-2.10.0-1.EL.5.x86_64.rpm

Or if a yum repository has been set:

yum install rudder-agent

4.3 Install Rudder Agent on SLES

Following commands are executed as the root user.

Add the Rudder packages repository:

• on a SLES 11 node:

zypper ar -n "Rudder RPM Repositories" \
http://www.rudder-project.org/rpm-2.10/SLES_11_SP1/ Rudder

Rudder User Documentation 17 / 89

• on a SLES 10 node:

zypper sa "http://www.rudder-project.org/rpm-2.10/SLES_10_SP3/" Rudder

Update your local package database to retrieve the list of packages available on our repository:

zypper ref

Install the rudder-agent package:

zypper install rudder-agent

4.4 Configure and validate

4.4.1 Configure Rudder Agent

Configure the IP address of the Rudder Root Server in the following file

sudo tee /var/rudder/cfengine-community/policy_server.dat <<EOF
@@replace_by_rudder_server_ip@@
EOF

Tip
We advise you to use the IP address of the Rudder Root Server. The DNS name of this server can also be accepted if you
have a complete DNS infrastructure matching the IP of the Nodes with their hostnames.

4.4.2 Start Rudder Agent:

sudo /etc/init.d/rudder-agent start

4.4.3 Validate new Node

Several minutes after the start of the agent, a new Node should be pending in the Rudder web interface.

You will be able to browse its inventory, and accept it to manage its configuration with Rudder.

4.4.3.1 Force Rudder Agent execution

You may force the agent execution by issuing the following command:

/var/rudder/cfengine-community/bin/cf-agent -KI

Rudder User Documentation 18 / 89

Chapter 5

Upgrade Rudder

This short chapter covers the upgrade of the Rudder Server Root and Rudder Agent from older versions to the latest version,
2.10.

Please note that you can upgrade directly from Rudder 2.6.x, 2.7.x, 2.8.x or 2.9.x to Rudder 2.10. However, upgrades from 2.3.x,
2.4.x and 2.5.x are no longer supported. If you are still running one of those, please first upgrade to one of the supported versions
above.

The upgrade is quite similar to the installation.

A big effort has been made to ensure that all upgrade steps are performed automatically by packaging scripts. Therefore, you
shouldn’t have to do any upgrade procedures manually, but you will note that several data migrations occur during the upgrade
process.

5.1 Caution cases

5.1.1 Upgrading from Rudder 2.8 or 2.9

Rudder 2.10.* and Rudder 2.8.* and 2.9.* use the same CFEngine version, and no changes were made to the agent package apart
its name. Therefore Rudder agent 2.8./2.9. are fully compatible with Rudder server 2.10., so it is not necessary to update your
agents to 2.10..

To have a successful upgrade, you only need to upgrade Rudder server to 2.10.

5.1.2 Upgrading from Rudder 2.6 or 2.7

Rudder 2.10.* contains CFEngine 3.5.2 which is more strict with the parsing of its promises. To have a successful upgrade these
steps should be followed:

• Make sure the Rudder server to be upgraded is in a version that is at least 2.4.11, 2.6.8 and 2.7.5 before attempting to upgrade
to 2.10.*

• Ensure that all node’s promises have been regenerated since the server upgrade to this version (don’t forget that your Techniques
will not be upgraded automatically, follow the Technique Upgrade section to upgrade them manually)

– On Rudder WebUI, at the top right of the screen, click on Regenerate now

– On Rudder 2.6 or later, you can use the API from the server with this command: curl http://localhost/rudder/api/deploy/-
reload

• Upgrade all agents connected to that server to 2.10.* or 2.8./2.9.

• Upgrade the Rudder server to 2.10

http://localhost/rudder/api/deploy/reload
http://localhost/rudder/api/deploy/reload

Rudder User Documentation 19 / 89

5.1.3 Known bugs

• After upgrade, if the web interface has display problems, empty your navigator cache and/or logout/login.

5.2 Upgrade Rudder on Debian or Ubuntu

Following commands are executed as the root user.

Add Rudder project repository:

echo "deb http://www.rudder-project.org/apt-2.10/ $(lsb_release -cs) main" > /etc/apt/ ←↩
sources.list.d/rudder.list

Update your local package database to retrieve the list of packages available on our repository:

apt-get update

For Rudder Server, upgrade all the packages associated to rudder-server-root:

• With apt-get:

apt-get install rudder-server-root

and after the upgrade of these packages, restart jetty to be sure that the changes are applied:

/etc/init.d/rudder-jetty restart

For Rudder Agent, upgrade the rudder-agent package:

apt-get install rudder-agent

Warning
Rudder includes a script for upgrading all files, databases, etc. . . which need migrating. Therefore, you should not
replace your old files by the new ones when apt-get/aptitude asks about this, unless you want to reset all your parame-
ters.

5.3 Upgrade Rudder on RedHat or CentOS

Following commands are executed as the root user.

Define a yum repository for RedHat/CentOS 6:

$ echo "[Rudder_2.10]
name=Rudder 2.10 Repository
baseurl=http://www.rudder-project.org/rpm-2.10/RHEL_6/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.10/RHEL_6/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Or for RedHat/CentOS 5:

$ echo "[Rudder_2.10]
name=Rudder 2.10 Repository
baseurl=http://www.rudder-project.org/rpm-2.10/RHEL_5/
gpgcheck=1
gpgkey=http://www.rudder-project.org/rpm-2.10/RHEL_5/repodata/repomd.xml.key
" > /etc/yum.repos.d/rudder.repo

Rudder User Documentation 20 / 89

For Rudder Server (RHEL 6 only), upgrade the rudder-* and ncf packages:

yum update "rudder-*" "ncf"

For Rudder Agent, upgrade the rudder-agent package:

yum update rudder-agent

5.4 Upgrade Rudder on SLES

Following commands are executed as the root user.

Add the Rudder packages repository:

• With zypper on a SLES 11 system:

zypper ar -n "Rudder RPM Repositories" \
http://www.rudder-project.org/rpm-2.10/SLES_11_SP1/ Rudder

• With zypper on a SLES 10 system:

zypper sa "http://www.rudder-project.org/rpm-2.10/SLES_10_SP3/" Rudder

Update your local package database to retrieve the list of packages available on our repository:

zypper ref

For Rudder Server, upgrade all the packages associated to rudder-server-root:

zypper update "rudder*" "ncf*"

and after the upgrade of these packages, restart jetty to be sure that the changes are applied:

/etc/init.d/rudder-jetty restart

For Rudder Agent, upgrade the rudder-agent package:

zypper update rudder-agent

Rudder User Documentation 21 / 89

Chapter 6

Rudder Web Interface

This chapter is a general presentation of the Rudder Web Interface. You will find how to authenticate in the application, a
description of the design of the screen, and some explanations about usage of common user interface items like the search fields
and the reporting screens.

6.1 Authentication

When accessing the Rudder web interface, a login / password is required. The default accounts are:

Login Password Privilege level
jon.doe secret Administrator
alex.bar secret2 Read-only
bob.foo secret3 User and validator (workflows)

You can change the user accounts by following the User management procedure.

6.2 Presentation of Rudder Web Interface

The web interface is organised according to the concepts described earlier. It is divided in three logical parts: Node Management,
Configuration Management and Administration.

6.2.1 Rudder Home

The home page summarizes the content of the other parts and provides quick links for the most common actions.

Rudder User Documentation 22 / 89

Figure 6.1: Rudder Homepage

6.2.2 Node Management

In the Node Management section, you will find the validation tool for new Nodes, a search engine for validated Nodes, and the
management tool for groups of Nodes.

Rudder User Documentation 23 / 89

Figure 6.2: Node Management welcome screen

6.2.3 Configuration Management

In the Configuration Management section, you can select the Techniques, configure the Directives and manage the Rules.

Figure 6.3: Configuration Management welcome screen

Rudder User Documentation 24 / 89

6.2.4 Administration

The Administration section provides some general settings: you can setup the available networks for the Policy Server, view the
event logs and manage your plugin collection.

Figure 6.4: Administration welcome screen

6.3 Units supported as search parameters

Some parameters for the advanced search tool allow using units. For example, in the search criterion for RAM size, you can type
512MB instead of a value in bytes. This paragraph describes supported units by parameter type.

6.3.1 Bytes and multiples

All criteria using a memory size (RAM, hard disk capacity, etc) is by default expected in bytes. If no other unit is specified, all
values will be assumed to be in bytes.

6.3.2 Convenience notation

All memory sizes can be written using spaces or underscores (_) to make the numbers easier to read. Numbers must begin with
a digit. For example, the following numbers are all valid and all worth 1234:

Rudder User Documentation 25 / 89

1234
1 234
1_234
1234_

The following number is not valid:

_1234

6.3.3 Supported units

Units used are non binary units, and a multiplication factor of 1024 is applied between each unit. Units are case-insensitive.
Therefore, Mb is identical to mB or mb or MB.

In detail, the following units are supported (provided in lower case, see above):

Notation Alternate Value
b o bytes (equivalent to not specifying a

unit)
kb ko 1024 bytes
mb mo 1024ˆ2 bytes
gb go 1024ˆ3 bytes
tb to 1024ˆ4 bytes
pb po 1024ˆ5 bytes
eb eo 1024ˆ6 bytes
zb zo 1024ˆ7 bytes
yb yo 1024ˆ8 bytes

Table 6.1: Units supported by Rudder search engine

Rudder User Documentation 26 / 89

Chapter 7

Node Management

7.1 Node Inventory

Rudder integrates a node inventory tool which harvest useful information about the nodes. This information is used by Rudder
to handle the nodes, and you can use the inventory information for Configuration Management purposes: search Nodes, create
Groups of Nodes, determine some configuration management variables.

In the Rudder Web Interface, each time you see a Node name, you can click on it and display the collection of information about
this Node. The inventory is organized as following: first tab is a summary of administrative information about the Node; other
tabs are specialized for hardware, network interfaces, and software for every Node; tabs for reports and logs are added on Rudder
managed Nodes.

The Node Summary presents administrative information like the Node Hostname, Operating System, Rudder Client name, Rudder
ID and Date when the inventory was last received. When the Node has been validated, some more information is displayed like
the Node Name and the Date first accepted in Rudder.

The hardware information is organized as following: General, File systems, Bios, Controllers, Memory, Port, Processor, Slot,
Sound, Storage, Video.

Network connections are detailed as following: Name of the interface on the system, IP address, Network Mask, usage of DHCP
or static configuration, MAC address, Type of connection, Speed of the connection and Status.

And finally, you get the list of every software package present on the system, including version and description.

On Nodes managed by Rudder, the Reports tab displays information about the status of the latest run of Rudder Agent, whereas
the Logs tab displays information about changes for the Node.

7.2 Accept new Nodes

At the starting point, the Rudder Server doesn’t know anything about the Nodes. After the installation of the Rudder Agent,
each Node registers itself to the Rudder Server, and sends a first inventory. Every new Node must be manually validated in the
Rudder Web Interface to become part of Rudder Managed Nodes. This task is performed in the Node Management > Accept
new Nodes section of the application. You can select Nodes waiting for an approval, and determine whether you consider them
as valid or not. Click on each Node name to display the extended inventory. Click on the magnifying glass icon to display the
policies which will be applied after the validation.

Example 7.1 Accept the new Node debian-node.rudder-project.org

1. Install and configure the Rudder Agent on the new Node debian-node.rudder-project.org

2. Wait a few minutes for the first run of the Rudder Agent.

3. Navigate to Node Management > Accept new Nodes.

Rudder User Documentation 27 / 89

4. Select the new Node in the list.

5. Validate the Node.

6. The Node is now integrated in Rudder, you can search it using the search tools.

7.3 Search Nodes

You can navigate to Node Management > Search Nodes to display information about the Nodes which have been already
validated, and are managed by Rudder.

7.3.1 Quick Search

The easiest search tool is the Quick search: type in the search field the first letters of the Rudder ID, Reference, or Hostname;
choose the accurate Node in the autocompletion list; validate and look at the Node information. This search tool can be very
useful to help you create a new search in the Advanced Search.

Example 7.2 Quick search the Node called debian-node
Assuming you have one managed Node called debian-node.rudder-project.org, which ID in Rudder is d06b1c6c-
f59b-4e5e-8049-d55f769ac33f.

1. Type in the Quick Search field the de or d0.

2. Autocompletion will propose you this Node: debian-node.rudder-project.org--d06b1c6c-f59b-
4e5e-8049-d55f769ac33f [d06b1c6c-f59b-4e5e-8049-d55f769ac33f].

7.3.2 Advanced Search

In the Advanced Search tool, you can create complex searches based on Node Inventory information. The benefit of the Advanced
Search tool is to save the query and create a Group of Nodes based on the search criteria.

• 1. Select a field

The selection of the field upon which the criteria will apply is a two step process. The list of fields is not displayed unordered and
extensively. Fields have been grouped in the same way they are displayed when you look at information about a Node. First you
choose among these groups: Node, Network Interface, Filesystem, Machine, RAM, Storage, BIOS, Controller, Port, Processor,
Sound Card, Video Card, Software, Environment Variable, Processes, Virtual Machines; then you choose among the list of fields
concerning this theme.

• 2. Select the matching rule

The matching rule can be selected between following possibilities: Is defined, Is not defined, =, 6= or Regex followed by the term
you are searching for presence or absence. Depending on the field, the list of searchable terms is either an free text field, either
the list of available terms.

• a. Regex matching rule

You can use regular expressions to find whatever you want in Node inventories. A search request using a regexp will look for
every node that match the pattern you entered.

Those regexps follow Java Pattern rules. See http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html for more de-
tails.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Rudder User Documentation 28 / 89

Example 7.3 Search node having an ip address matching 192.168.x.y
Assuming you want to search every node using an ip address match 192.168.x.y, where x<10 and y could be everything. You
will to add that line to your search request:

• Node summary, Ip address, Regex, 192\ .168\ .\d\ . .*

• b. Composite search

Some fields allow you to look for more than one piece of information at a time. That’s the case for environment variable. for
those fields you have to enter the first element then the separator then following elements. The name of the fields tells you about
what is expected. it would look like firstelement<sep>secondelement assuming that <sep> is the separator.

Example 7.4 Search Environment Variable LANG=C.
Assuming you want to search every node having the environment variable LANG set to C. You will have to add that search line
to your request:

• Environment variable, key=value, =, LANG=C.

• 3. Add another rule

You can select only one term for each matching rule. If you want to create more complex search, then you can add another rule
using the + icon. All rules are using the same operand, either AND or OR. More complex searches mixing AND and OR operands
are not available at the moment.

Example 7.5 Advanced search for Linux Nodes with ssh.
Assuming you want to search all Linux Nodes having ssh installed. You will create this 2 lines request:

1. Operator: AND.

2. First search line: Node, Operating System, =, Linux.

3. Second search line: Software, Name, =, ssh.

7.4 Group of Nodes

You can create Group of Nodes based on search criteria to ease attribution of Rules in Configuration Management. The creation
of groups can be done from the Node Management > Search Nodes page, or directly from the Groups list in Node Management
> Groups. A group can be either Dynamic or Static.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Example 7.6 Create a dynamic group for Linux Nodes with ssh having an ip address in 192.18.42.x.
To create that dynamic group like described above, You first have to create a new group with group type set to Dynamic. Then
you have to set it’s search request to :

1. Operator: AND.

2. First search line: Node, Operating System, =, Linux.

3. Second search line: Software, Name, =, ssh.

4. Third search line: Node summary, Ip address, Regex, 192\ .168\ .\d\ . .* .

Finally you have to Click on Search to populate the group and click on Save to actually save it.

Rudder User Documentation 29 / 89

Chapter 8

Configuration Management

8.1 Techniques

8.1.1 Concepts

A Technique defines a set of operations and configurations to reach the desired behaviour. This includes the initial set-up, but
also a regular check on the parameters, and automatic repairs (when possible).

All the Techniques are built with the possibility to change only part of a service configuration: each parameter may be either
active, either set on the "Don’t change" value, that will let the default values or in place. This allows for a progressive deployment
of the configuration management.

Finally, the Techniques will generate a set of reports which are sent to the Rudder Root Server, which will let you analyse the
percentage of compliance of your policies, and soon, detailed reports on their application.

8.1.2 Manage the Techniques

The Techniques shipped with Rudder are presented in a library that you can reorganize in Configuration > Techniques. The
library is organized in two parts: the available Techniques, and the selection made by the user.

Technique Library This is an organized list of all available Techniques. This list can’t be modified: every change made by a
user will be applied to the Active Techniques.

Active Techniques This is an organized list of the Techniques selected and modified by the user. By default this list is the
same as the Technique Library. Techniques can be disabled or deleted, and then activated again with a simple drag and
drop. Categories can be reorganised according to the desired taxonomy. A Technique can appear only once in the Active
Techniques list.

Tip
The current version of Rudder has only an handful of Techniques. We are aware that it considerably limits the use of the
application, but we choose to hold back other Techniques that did not, from our point of view, have the sufficient quality. In the
future, there will be some upgrades including more Techniques.

Warning
The creation of new Techniques is not covered by the Web interface. This is an advanced task which is currently not
covered by this guide.

Rudder User Documentation 30 / 89

8.1.3 Available Techniques

8.1.3.1 Application management

Apache 2 HTTP server This Policy Template will configure the Apache HTTP server and ensure it is running. It will ensure
the "apache2" package is installed (via the appropriate packaging tool for each OS), ensure the service is running and start
it if not and ensure the service is configured to run on initial system startup. Configuration will create a rudder vhost file.

APT package manager configuration Configure the apt-get and aptitude tools on GNU/Linux Debian and Ubuntu, especially
the source repositories.

OpenVPN client This Policy Template will configure the OpenVPN client service and ensure it is running. It will ensure the
"openvpn" package is installed (via the appropriate packaging tool for each OS), ensure the service is running and start it
if not and ensure the service is configured to run on initial system startup. Configuration will create a rudder.conf file. As
of this version, only the PSK peer identification method is supported, please use the "Download File" Policy Template to
distribute the secret key.

Package management for Debian / Ubuntu / APT based systems Install, update or delete packages, automatically and con-
sistently on GNU/Linux Debian and Ubuntu.

Package management for RHEL / CentOS / RPM based systems Install, update or delete packages, automatically and con-
sistently on GNU/Linux CentOS and RedHat.

8.1.3.2 Distributing files

Copy a file Copy a file on the machine

Distribute ssh keys Distribute ssh keys on servers

Download a file Download a file for a standard URL (HTTP/FTP), and set permissions on the downloaded file.

8.1.3.3 File state configuration

Set the permissions of files Set the permissions of files

8.1.3.4 System settings: Miscellaneous

Time settings Set up the time zone, the NTP server, and the frequency of time synchronisation to the hardware clock. Also
ensures that the NTP service is installed and started.

8.1.3.5 System settings: Networking

Hosts settings Configure the contents of the hosts filed on any operating system (Linux and Windows).

IPv4 routing management Control IPv4 routing on any system (Linux and Windows), with four possible actions: add, delete
(changes will be made), check presence or check absence (a warning may be returned, but no changes will be made) for a
given route.

Name resolution Set up the IP address of the DNS server name, and the default search domain.

NFS Server Configure a NFS server

Rudder User Documentation 31 / 89

8.1.3.6 System settings: Process

Process Management Enforce defined parameters on system processes

8.1.3.7 System settings: Remote access

OpenSSH server Install and set up the SSH service on Linux nodes. Many parameters are available.

8.1.3.8 System settings: User management

Group management This Policy Template manages the target host(s) groups. It will ensure that the defined groups are present
on the system.

Sudo utility configuration This Policy Template configures the sudo utility. It will ensure that the defined rights for given
users and groups are correctly defined.

User management Control users on any system (Linux and Windows), including passwords, with four possible actions: add,
delete (changes will be made), check presence or check absence (a warning may be returned, but no changes will be made)
for a given user.

8.2 Directives

Once you have selected and organized your Techniques, you can create your configurations in the Configuration Management
> Directives section.

Directive This is an instance of a Technique, which allows to set values for the parameters of the latter. Each Directive can have
a unique name. A Directive should be completed with a short and a long description, and a collection of parameters for the
variables defined by the Technique.

The screen is divided in three parts:

• on the left, your list of Techniques and Directives,

• on the right the description of the selected Technique or Directive.

• at the bottom, the configuration items of the selected Directive.

Click on the name of a Technique to show its description.

Click on the name of a Directive to see the Directive Summary containing the description of the Technique its derived from, and
the configuration items of the Directive.

Example 8.1 Create a Directive for Name resolution
Use the Technique Name resolution to create a new Directive called Google DNS Servers, and shortly described as Use
Google DNS Server. Check in the options Set nameservers and Set DNS search suffix. Set the value of the variable DNS resolver
to 8.8.8.8 and of Domain search suffix according to your organization, like rudder-project.org.

Rudder User Documentation 32 / 89

8.3 Rules

Rule It is the application of one or more directives to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

When a Rule is created or modified, the promises for the target nodes are generated. Rudder computes all the promises each
nodes must have, and makes them available for the nodes. This process can take up to several minutes, depending on the number
of managed nodes and the Policy Server configuration. During this time, the "Regenerate now" button is replaced by a moving
bar and a message stating "Generating rules". You can also press the "Regenerate now" button on the top of the interface if you
feel the generated promises should be modified (for instance, if you changed the configuration of Rudder)

8.4 Parameters

Rudder provides a simple way to add common and reusable variables in either plain Directives, or ncf-builder created Techniques:
the parameters.

The parameters enable the user to specify a content that can be put anywhere, using the following syntax:

• In Directives: ${rudder.param.name} will expand the content of the "name" parameter.

• In ncf Techniques: ${rudder_parameter.name} will do the same

Using this, you can specify common file headers (this is the default parameter, "rudder_file_edit_header"), common DNS or
domain names, backup servers, site-specific elements. . .

8.5 Compliance

A Directive contains one or multiple components. Each component generates one ore multiple reports, based on the number of
keys in this component. For example, for a Sudoers Directive, each user is a key. These states are available in reports:

Success The system is already in the desired state. No change is needed. Conformity is gained.

Repaired The system was not in the desired state. Rudder applied some change and repaired what was not correct. Now the
system is in the desired state. Conformity is gained.

Error The system is not in the desired state. Rudder couldn’t repair the system.

Applying When a Directive is applied, Rudder waits during 10 minutes for a report. During this period, the Directive is said
Applying.

No answer The system didn’t send any reports. Rudder waited for 10 minutes and no report was received.

Rudder User Documentation 33 / 89

A Directive has gained conformity on a Node if every report for each component, for each key, is in Success state. This is the
only condition.

Based on these facts, the compliance of a Rule is calculated like this :

Number of Nodes for which conformity is reached for every Directive of the Rule / Total number of Nodes on which the Rule has
been applied

Figure 8.1: Reports

8.6 Validation workflow in Rudder

The validation workflow is a feature whose purpose is to hold any change (Rule, Directive, Group) made by users in the web
interface, to be reviewed first by other users with the adequate privileges before actual deployment.

The goal is to improve safety and knowledge sharing in the team that is using Rudder.

To enable it, you only have to tick "Enable Change Requests" in the Administration - Settings tab of the web interface. (This
feature is optional and can be disabled at any time without any problem, besides risking the invalidation of yet-unapproved
changes)

Rudder User Documentation 34 / 89

8.6.1 What is a Change request ?

A Change request represents a modification of a Rule/Directive/Group from an old state to a new one. The Change is not saved
and applied by the configuration, before that, it needs to be reviewed and approved by other members of the team.

A Change request has:

• An Id (an integer > 0)

• A title.

• A description.

• A creator.

• A status.

• Its own history.

This information can be updated on the change request detail page. For now, a Change request is linked to one change at a time.

8.6.1.1 Change request status

There is 4 Change request status:

Pending validation

• The change has to be reviewed and validated.

• Can be send to: Pending deployment, Deployed, Cancelled.

Pending deployment

• The change was validated, but now require to be deployed.

• Can be send to: Deployed, Cancelled.

Deployed

• The change is deployed.

• This is a final state, it can’t be moved anymore.

Cancelled

• The change was not approved.

• This is a final state, it can’t be moved anymore.

Here is a diagram about all those states and transitions:

Rudder User Documentation 35 / 89

8.6.1.2 Change request management page

All Change requests can be seen on the /secure/utilities/changeRequests page. There is a table containing all requests, you can
access to each of them by clicking on their id. You can filter change requests by status and only display what you need.

8.6.1.3 Change request detail page

Each Change request is reachable on the /secure/utilities/changeRequest/id.

Rudder User Documentation 36 / 89

The page is divided into two sections:

Change request information display common information (title, description, status, id) and a form to edit them.

Change request content In this section, there is two tabs:

• History about that change request

• Display the change proposed

Rudder User Documentation 37 / 89

8.6.2 How to create a Change request ?

If they are enabled in Rudder, every change in Rudder will make you create a Change request. You will have a popup to enter
the name of your change request and a change message.

The change message will be used as description for you Change Request, so we advise to fill it anyway to keep an explanation
ab out your change.

Change request are not available for Rule/Directive/Groups creation, they are only active if the Rule/Directive/Groups existed
before:

Here is a small table about all possibilities:

Rudder User Documentation 38 / 89

8.6.3 How to validate a Change request ?

8.6.3.1 Roles

Not every user can validate or deploy change in Rudder. Only those with one of the following roles can act on Change request:

Validator Can validate Change request

Deployer To deploy Change Request

Both of those roles:

• Give you access to pending Change requests

• Allow you to perform actions on them (validate or cancel)

You have to change users in /opt/rudder/etc/rudder-users.xml and include those rights. Without one of those roles, you can
only access Change Request in Deployed or Cancelled and those you opened before.

You can deploy directly if you have both the validator and deployer roles. The administrator Role gives you both the deployer
and valdiator role.

There is also the possibility to access Change requests in Read only mode by using the role validator_read or deployer_read.

Rudder User Documentation 39 / 89

8.6.3.2 Self Validations

Using Change requests means that you want your team to share knowledge, and validate each other change. So by default:

• Self validation is disabled.

• Self deployment is enabled.

Those two behaviours can be changed in the property file /opt/rudder/etc/rudder-web.properties. rudder.workflow.self.validation
and rudder.workflow.self.deployment are the properties that define this behaviour.

8.6.4 Change request and conflicts

When the initial state of a Change request has changed (i.e.: you want to modify a Directive, but someone else changes about
that Directive has been accepted before yours), your change can’t be validated anymore.

For now, we decided to reduce to the possibility of an error or inconsistency when there are concurrent changes. In a future
version of Rudder, there will be a system to handle those conflicts, and make sure actual changes are not overwritten.

8.6.5 Notifications:

In several parts of Rudder webapp there are some Notifications about Change requests.

8.6.5.1 Pending change requests

This notification is displayed only if the validator/deployer role is active on your user account. It shows you how many Change
requests are waiting to be reviewed/deployed. clicking on it will lead you to the Change request management page, with a filter
already applied.

Rudder User Documentation 40 / 89

8.6.5.2 Change already proposed on Rule/Directive/Group

When there is a change about the Rule/Directive/Group already proposed but not deployed/cancelled, you will be notified that
there are some pending Change requests about that element. You will be provided a Link to those change request, So you can
check if the change is already proposed.

Rudder User Documentation 41 / 89

Chapter 9

Administration

This chapter covers basic administration task of Rudder services like configuring some parameters of the Rudder policy server,
reading the services log, and starting, stopping or restarting Rudder services.

9.1 Archives

9.1.1 Archive usecases

The archive feature of Rudder allows to:

• Exchange configuration between multiple Rudder instances, in particular when having distinct environments;

• Keep an history of major changes.

9.1.1.1 Changes testing

Export the current configuration of Rudder before you begin to make any change you have to test: if anything goes wrong, you
can return to this archived state.

9.1.1.2 Changes qualification

Assuming you have multiple Rudder instances, each on dedicated for the developement, qualification and production environ-
ment. You can prepare the changes on the development instance, export an archive, deploy this archive on the qualification
environment, then on the production environment.

Versions of the Rudder servers
If you want to export and import configurations between environments, the version of the source and target Rudder
server must be exactly the same. If the versions don’t match (even if only the minor versions are different), there is a
risk that the import will break the configuration on the target Rudder server.

9.1.2 Concepts

In the Administration > Archives section of the Rudder Server web interface, you can export and import the configuration of
Rudder Groups, Directives and Rules. You can either archive the complete configuration, or only the subset dedicated to Groups,
Directives or Rules.

Rudder User Documentation 42 / 89

When archiving configuration, a git tag is created into /var/rudder/configuration-repository. This tag is then
referenced in the Rudder web interface, and available for download as a zip file. Please note that each change in the Rudder web
interface is also committed in the repository.

The content of this repository can be imported into any Rudder server (with the same version).

9.1.3 Archiving

To archive Rudder Rules, Groups, Directives, or make a global archive, you need to go to the Administration > Archives section
of the Rudder Server web interface.

To perform a global archive, the steps are:

1. Click on Archive everything - it will update the drop down list Choose an archive with the latest data

2. In the drop down list Choose an archive, select the newly created archive (archives are sorted by date), for example
2015-01-08 16:39

3. Click on Download as zip to download an archive that will contains all elements.

9.1.4 Importing configuration

On the target server, importing the configuration will "merge" them with the existing configuration: every groups, rules, directives
or techniques with the same identifier will be replaced by the import, and all others will remain untouched.

To import the archive on the target Rudder server, you cn follow the following steps:

1. Uncompress the zip archive in /var/rudder/configuration-repository

2. If necessary, correct all files permissions: chown -R root:rudder directives groups parameters rul
eCategories rules techniques

3. Add all files in the git repository: git add .&& git commit -am "Importing configuration"

4. Finally, in the Web interface, go to the Administration > Archives section, and select Latest Git commit in the drop down
list in the Global archive section, and click on Restore everything to restore the configuration.

Tip
You can also perform the synchronisation from on environment to another by using git, through a unique git repository refer-
enced on both environment.
For instance, using one unique git repository you can follow this workflow:

1. On Rudder test:

a. Use Rudder web interface to prepare your policy;

b. Create an archive;

c. git push to the central repository;

2. On Rudder production:

a. git pull from the central repository;

b. Use Rudder web interface to import the qualified archive.

Rudder User Documentation 43 / 89

9.1.5 Deploy a preconfigured instance

You can use the procedures of Archiving and Restoring configuration to deploy preconfigured instance. You would prepare first
in your labs the configuration for Groups, Directives and Rules, create an Archive, and import the Archive on the new Rudder
server installation

9.2 Event Logs

Every action happening in the Rudder web interface are logged in the PostgreSQL database. The last 1000 event log entries are
displayed in the Administration > View Event Logs section of Rudder web application. Each log item is described by its ID,
Date, Actor, and Event Type, Category and Description. For the most complex events, like changes in nodes, groups, techniques,
directives, deployments, more details can be displayed by clicking on the event log line.

Event Categories

• User Authentication

• Application

• Configuration Rules

• Policy

• Technique

• Policy Deployment

• Node Group

• Nodes

• Rudder Agents

• Policy Node

• Archives

9.3 Policy Server

The Administartion > Policy Server Management section sum-up information about Rudder policy server and its parameters.

9.3.1 Configure allowed networks

Here you can configure the networks from which nodes are allowed to connect to Rudder policy server to get their updated rules.

You can add as many network as you want, the expected format is: networkip/mask, for example 42.42.0.0/16.

9.3.2 Clear caches

Clear cached data, like node configuration. That will trigger a full redeployment, with regeneration of all promises files.

9.3.3 Reload dynamic groups

Reload dynamic groups, so that new nodes and their inventories are taken into account. Normally, dynamic group are automati-
cally reloaded unless that feature is explicitly disable in Rudder configuration file.

Rudder User Documentation 44 / 89

9.4 Plugins

Rudder is an extensible software. The Administration > Plugin Management section sum-up information about loaded plugins,
their version and their configuration.

A plugin is a JAR archive. The web application must be restarted after installation of a plugin.

9.4.1 Install a plugin

To install a plugin, just copy the JAR file and the configuration file in the according directories.

/opt/rudder/jetty7/plugins/ This directory contains the JAR files of the plugins.

/opt/rudder/etc/plugins/ This directory contains the configuration files of the plugins.

9.5 Basic administration of Rudder services

9.5.1 Restart the agent of the node

To restart the Rudder Agent, use following command on a node:

/etc/init.d/rudder-agent restart

Tip
This command can take more than one minute to restart the CFEngine daemon. This is not a bug, but an internal protection
system of CFEngine.

9.5.2 Restart the root rudder service

9.5.2.1 Restart everything

You can restart all components of the Rudder Root Server at once:

/etc/init.d/rudder-server-root restart

9.5.2.2 Restart only one component

Here is the list of the components of the root server with a brief description of their role, and the command to restart them:

CFEngine server Distribute the CFEngine configuration to the nodes.

/etc/init.d/rudder-agent restart

Web server application Execute the web interface and the server that handles the new inventories.

/etc/init.d/rudder-jetty restart

Web server front-end Handle the connection to the Web interface, the received inventories and the sharing of the UUID
Rudder Root Server.

Rudder User Documentation 45 / 89

/etc/init.d/apache2 restart

LDAP server Store the inventories and the Node configurations.

/etc/init.d/rudder-slapd restart

SQL server Store the received reports from the nodes.

/etc/init.d/postgresql* restart

9.6 Technique upgrade

9.6.1 Initial installation

At the first installation, Rudder will automatically deploy a Technique library in the /var/rudder/configuration-repository/techniques
directory.

9.6.2 Upgrade

When upgrading Rudder to another version, a new (updated) Technique library will be deployed in /opt/rudder/share/techniques,
and Rudder will automatically take care of updating the system Techniques in the configuration-repository directory.

However, the other Techniques will not be updated automatically (yet), so you will have to do it yourself.

Caution
Please keep in mind that if you did manual modifications on the Techniques in existing directories, or created new
versions of them, you will have some merging work to do.

9.6.2.1 Upgrading the Technique library

root@node:~# cd /var/rudder/configuration-repository
root@node:~# cp -a /opt/rudder/share/techniques/* techniques/
root@node:~# git status
#~Now, inspect the differences. If no conflict is noticeable, then go ahead.
root@node:~# git add techniques/
root@node:~# git commit -m "Technique upgrade" # Here, put a meaningful message about why ←↩

you are updating.

After the commit has been validated by GIT, please go to the Rudder web interface, to the Administration tab, Policy Server tab,
and click on "Reload Techniques". It will reload the Technique library and trigger a full redeployment on nodes.

Please check that the deployment is successful before logging out.

Rudder User Documentation 46 / 89

9.7 Password upgrade

This version of Rudder uses a central file to manage the passwords that will be used by the application: /opt/rudder/etc/rudder-
passwords.conf

When first installing Rudder, this file is initialized with default values, and when you run rudder-init.sh, it will be updated with
randomly generated passwords.

On the majority of cases, this is fine, however you might want to adjust the passwords manually. This is possible, just be cautious
when editing the file, as if you corrupt it Rudder will not be able to operate correclty anymore and will spit numerous errors in
the program logs.

As of now, this file follows a simple syntax: ELEMENT:password

You are able to configure three passwords in it: The OpenLDAP one, the PostgreSQL one and the authenticated WebDAV one.

If you edit this file, Rudder will take care of applying the new passwords everywhere it is needed, however it will restart the
application automatically when finished, so take care of notifying users of potential downtime before editing passwords.

Here is a sample command to regenerate the WebDAV password with a random password, that is portable on all supported
systems. Just change the "RUDDER_WEBDAV_PASSWORD" to any password file statement corresponding to the password
you want to change.

sed -i s/RUDDER_WEBDAV_PASSWORD.*/RUDDER_WEBDAV_PASSWORD:$(dd if=/dev/urandom count=128 bs ←↩
=1 2>&1 | md5sum | cut -b-12)/ /opt/rudder/etc/rudder-passwords.conf

9.8 User management

Change the users authorized to connect to the application. You can define authorization level for each user

9.8.1 Configuration of the users using a XML file

9.8.1.1 Generality

The credentials of a user are defined in the XML file /opt/rudder/etc/rudder-users.xml. This file expects the
following format:

<authentication hash="sha512">
<user name="alice" password="xxxxxxx" role="administrator"/>
<user name="bob" password="xxxxxxx" role="administration_only, node_read"/>
<user name="custom" password="xxxxxxx" role="node_read,node_write,configuration_read, ←↩

rule_read,rule_edit,directive_read,technique_read"/>
</authentication>

The name and password attributes are mandatory (non empty) for the user tags. The role attribute can be omited but the user will
have no permission, and only valid attributes are recognized.

Every modification of this file should be followed by a restart of the Rudder web application to be taken into account:

/etc/init.d/rudder-jetty restart

9.8.1.2 Passwords

The authentication tag should have a "hash" attribute, making "password" attributes on every user expect hashed passwords. Not
specifying a hash attribute will fallback to plain text passwords, but it is strongly advised not to do so for security reasons.

Rudder User Documentation 47 / 89

Value Algorithm Linux command to hash the
password

"md5" MD5 read mypass;echo -n
$mypass | md5sum

"sha" or "sha1" SHA1 read mypass;echo -n
$mypass | shasum

"sha256" or "sha-256" SHA256 read mypass;echo -n
$mypass | sha256sum

"sha512" or "sha-512" SHA512 read mypass;echo -n
$mypass | sha512sum

Table 9.1: Hashed passwords algorithms list

The algorithm to be used to create the hash (and verify it during authentication) depend on the value of the hash attribute. The
possible values, the corresponding algorithm and the Linux shell command need to obtain the hash of the "secret" password for
this algorithm are listed here:

When using the suggested commands to hash a password, you must enter the command, then type your password, and hit return.
The hash will then be displayed in your terminal. This avoids storing the password in your shell history.

Here is an example of authentication file with hashed password:

<authentication hash="sha256">

<!-- In this example, the hashed password is: "secret", hashed as a sha256 value -->
<user name="carol" password="2 ←↩

bb80d537b1da3e38bd30361aa855686bde0eacd7162fef6a25fe97bf527a25b" role="administrator ←↩
"/>

</authentication>

9.8.2 Configuring an LDAP authentication provider for Rudder

If you are operating on a corporate network or want to have your users in a centralized database, you can enable LDAP authenti-
cation for Rudder users.

9.8.2.1 LDAP is only for authentication

Take care of the following limitation of the current process: only authentication is delegated to LDAP, NOT authorizations. So
you still have to declare user’s authorizations in the Rudder user file (rudder-users.xml).

An user whose authentication is accepted by LDAP but not declared in the rudder-users.xml file is considered to have no rights
at all (and so will only see a reduced version of Rudder homepage, with no action nor tabs available).

The credentials of a user are defined in the XML file /opt/rudder/etc/rudder-users.xml. This file expects the
following format:

<authentication>
<user name="alice" password="LDAP" role="administrator"/>
<user name="bob" password="LDAP" role="administration_only, node_read"/>
<user name="carol" password="LDAP" role="node_read,node_write,configuration_read, ←↩

rule_read,rule_edit,directive_read,technique_read"
</authentication>

Where name is the login used in Rudder to find the user. When LDAP authentication is enabled, the password field is ignored
and by convention, it is set to LDAP value (so that there is an insight about the authentication used).

Every modification of this file should be followed by a restart of the Rudder web application to be taken into account:

/etc/init.d/rudder-jetty restart

Rudder User Documentation 48 / 89

9.8.2.2 Enable LDAP authentication

LDAP authentication is enabled by setting the property rudder.auth.ldap.enable to true in file /opt/rudder/
etc/rudder-web.properties

The LDAP authentication process is a bind/search/rebind in which an application connection (bind) is used to search (search) for
a user entry given some base and filter parameters, and then, a bind (rebind) is tried on that entry with the credential provided by
the user.

So next, you have to set-up the connection parameters to the LDAP directory to use. There is three properties to change:

• rudder.auth.ldap.connection.url

• rudder.auth.ldap.connection.bind.dn

• rudder.auth.ldap.connection.bind.password

Search base and filter to use to find the user. # The search base can be left empty. # login by the user. # rudder.auth.ldap.searchbase=ou=People

An AD example would be: # #rudder.auth.ldap.searchbase=

9.8.3 Authorization management

For every user you can define an access level, allowing it to access different pages or to perform different actions depending on
its level.

You can also build custom roles with whatever permission you want, using a type and a level as specified below.

In the xml file, the role attribute is a list of permissions/roles, separated by a comma. Each one adds permissions to the user. If
one is wrong, or not correctly spelled, the user is set to the lowest rights (NoRights), having access only to the dashboard and
nothing else.

9.8.3.1 Pre-defined roles

Name Access level
administrator All authorizations granted, can access and modify

everything
administration_only Only access to administration part of rudder, can do

everything within it.
user Can access and modify eveything but the administration

part
configuration Can only access and act on configuration section
read_only Can access to every read only part, can perform no action
inventory Access to information about nodes, can see their inventory,

but can’t act on them
rule_only Access to information about rules, but can’t modify them

for each user you can define more than one role, each role adding its authorization to the user.

Example: "rule_only,administration_only" will only give access to the "Administration" tab as well as the Rules.

9.8.3.2 Custom roles

You can set a custom set of permissions instead of a pre-defined role.

A permission is composed of a type and a level:

• Type: Indicates what kind of data will be displayed and/or can be set/updated by the user

Rudder User Documentation 49 / 89

– "configuration", "rule", "directive", "technique", "node", "group", "administration", "deployment".

• Level: Access level to be granted on the related type

– "read", "write", "edit", "all" (Can read, write, and edit)

Depending on that value(s) you give, the user will have access to different pages and action in Rudder.

Usage example:

• configuration_read→Will give read access to the configuration (Rule management, Directives and Parameters)

• rule_write, node_read→Will give read and write access to the Rules and read access to the Nodes

9.8.4 Going further

Rudder aims at integrating with your IT system transparently, so it can’t force its own authentication system.

To meet this need, Rudder relies on the modular authentication system Spring Security that allows to easily integrate with
databases or an entreprise SSO like CAS, OpenID or SPNEGO. The documentation for this integration is not yet available, but
don’t hesitate to reach us on this topic.

Rudder User Documentation 50 / 89

Chapter 10

Usecases

This chapter gives a few examples for using Rudder. We have no doubt that you’ll have your own ideas, that we’re impatient to
hear about. . .

10.1 Dynamic groups by operating system

Create dynamic groups for each operating system you administer, so that you can apply specific policies to each type of OS.
When new nodes are added to Rudder, these policies will automatically be enforced upon them.

10.2 Library of preventive policies

Why not create policies for emergency situations in advance? You can then put your IT infrastructure in "panic" mode in just a
few clicks.

For example, using the provided Techniques, you could create a Name resolution Directive to use your own internal DNS servers
for normal situations, and a second, alternative Directive, to use Google’s public DNS servers, in case your internal DNS servers
are no longer available.

10.3 Standardizing configurations

You certainly have your own best practices (let’s call them good habits) for setting up your SSH servers.

But is that configuration the same on all your servers? Enforce the settings your really want using an OpenSSH server policy and
apply it to all your Linux servers. SSH servers can then be stopped or reconfigured manually many times, Rudder will always
restore your preferred settings and restart the SSH server in less than 5 minutes.

Rudder User Documentation 51 / 89

Chapter 11

Advanced usage

This chapter describe advanced usage of Rudder.

11.1 Node management

11.1.1 Reinitialize policies for a Node

To reinitialize the policies for a Node, delete the local copy of the Applied Policies fetched from the Rudder Server, and create a
new local copy of the initial promises.

root@node:~# rm -rf /var/rudder/cfengine-community/inputs/*
root@node:~# cp -a /opt/rudder/share/initial-promises/* /var/rudder/cfengine-community/ ←↩

inputs/

At next run of the Rudder Agent (it runs every five minuts), the initial promises will be used.

Caution
Use this procedure with caution: the Applied Policies of a Node should never get broken, unless some major change
has occurred on the Rudder infrastructure, like a full reinstallation of the Rudder Server.

11.1.2 Installation of the Rudder Agent

11.1.2.1 Static files

At installation of the Rudder Agent, files and directories are created in following places:

/etc Scripts to integrate Rudder Agent in the system (init, cron).

/opt/rudder/share/initial-promises Initialization promises for the Rudder Agent. These promises are used until
the Node has been validated in Rudder. They are kept available at this place afterwards.

/opt/rudder/lib/perl5 The FusionInventory Inventory tool and its Perl dependencies.

/opt/rudder/bin/run-inventory Wrapper script to launch the inventory.

/opt/rudder/sbin Binaries for CFEngine Community.

/var/rudder/cfengine-community This is the working directory for CFEngine Community.

Rudder User Documentation 52 / 89

11.1.2.2 Generated files

At the end of installation, the CFEngine Community working directory is populated for first use, and unique identifiers for the
Node are generated.

/var/rudder/cfengine-community/bin/ CFEngine Community binaries are copied there.

/var/rudder/cfengine-community/inputs Contains the actual working CFEngine Community promises. Initial
promises are copied here at installation. After validation of the Node, Applied Policies, which are the CFEngine promises
generated by Rudder for this particular Node, will be stored here.

/var/rudder/cfengine-community/ppkeys An unique SSL key generated for the Node at installation time.

/opt/rudder/etc/uuid.hive An unique identifier for the Node is generated into this file.

11.1.2.3 Services

After all of these files are in place, the CFEngine Community daemons are launched:

cf-execd This CFEngine Community daemon is launching the CFEngine Community Agent cf-agent every 5 minutes.

cf-serverd This CFEngine Community daemon is listening on the network on Rudder Root and Relay servers, serving
policies and files to Rudder Nodes.

11.1.2.4 Configuration

At this point, you should configure the Rudder Agent to actually enable the contact with the server. Type in the IP address of the
Rudder Root Server in the following file:

echo *root_server_IP_address* > /var/rudder/cfengine-community/policy_server.dat

11.1.3 Rudder Agent interactive

You can force the Rudder Agent to run from the console and observe what happens.

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

Error: the name of the Rudder Root Server can’t be resolved
If the Rudder Root Server name is not resolvable, the Rudder Agent will issue this error:

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

Unable to lookup hostname (rudder-root) or cfengine service: Name or service not ←↩
known

To fix it, either you set up the agent to use the IP adress of the Rudder root server instead of its Domain name, either
you set up accurately the name resolution of your Rudder Root Server, in your DNS server or in the hosts file.
The Rudder Root Server name is defined in this file

root@node:~# echo *IP_of_root_server* > /var/rudder/cfengine-community/policy_server ←↩
.dat

Rudder User Documentation 53 / 89

Error: the CFEngine service is not responding on the Rudder Root Server
If the CFEngine is stopped on the Rudder Root Server you will get this error:

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI
!! Error connecting to server (timeout)
!!! System error for connect: "Operation now in progress"
!! No server is responding on this port
Unable to establish connection with rudder-root

Restart the CFEngine service:

user@rudder-root:~$ sudo /var/rudder/cfengine-community/bin/cf-serverd

11.1.4 Processing new inventories on the server

11.1.4.1 Verify the inventory has been received by the Rudder Root Server

There is some delay between the time when the first inventory of the Node is sent, and the time when the Node appears in the
New Nodes of the web interface. For the brave and impatient, you can check if the inventory was sent by listing incoming Nodes
on the server:

ls /var/rudder/inventories/incoming/

11.1.4.2 Process incoming inventories

On the next run of the CFEngine agent on Rudder Root Server, the new inventory will be detected and sent to the Inventory
Endpoint. The inventory will be then moved in the directory of received inventories. The the Inventory Endpoint do its job and
the new Node appears in the interface.

You can force the execution of CFEngine agent on the console:

user@rudder-root:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI

11.1.4.3 Validate new Nodes

User interaction is required to validate new Nodes.

11.1.4.4 Prepare policies for the Node

Policies are not shared between the Nodes for obvious security and confidentiality reasons. Each Node has its own set of policies.
Policies are generated for Nodes according in the following states:

1. Node is new;

2. Inventory has changed;

3. Technique has changed;

4. Directive has changed;

5. Group of Node has changed;

6. Rule has changed;

7. Regeneration was forced by the user.

Rudder User Documentation 54 / 89

Figure 11.1: Generate policy workflow

11.1.5 Agent execution frequency on nodes

11.1.5.1 Checking configuration (CFEngine)

Rudder is configured to check and repair configurations using the CFEngine agent every 5 minutes, at 5 minutes past the hour,
10 minutes past the hour, etc.

The exact run time on each machine will be delayed by a random interval, in order to "smooth" the load across your infrastructure
(also known as "splay time"). This reduces simultaneous connections on relay and root servers (both for the CFEngine server
and for sending reports).

Rudder User Documentation 55 / 89

Up to and including Rudder 2.10.x, this random interval is between 0 and 1 minutes. As of Rudder 2.10.x and later, this random
interval is between 0 and 5 minutes.

11.1.5.2 Inventory (FusionInventory)

The FusionInventory agent collects data about the node it’s running on such as machine type, OS details, hardware, software,
networks, running virtual machines, running processes, environment variables. . .

This inventory is scheduled once every 24 hours, and will happen in between 0:00 and 5:00 AM. The exact time is randomized
across nodes to "smooth" the load across your infrastructure.

11.2 Password management

You might want to change the default passwords used in Rudder’s managed daemons for evident security reasons.

11.2.1 Configuration of the postgres database password

You will have to adjust the postgres database and the rudder-web.properties file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the Postgres database user

su - postgres -c "psql -q -c \"ALTER USER blah WITH PASSWORD ’$PASS’\""

• Insert the password in the rudder-web.properties file

sed -i "s%^rudder.jdbc.password.*$%rudder.jdbc.password=$PASS%" /opt/rudder/etc/rudder-web. ←↩
properties

11.2.2 Configuration of the OpenLDAP manager password

You will have to adjust the OpenLDAP and the rudder-web.properties file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the password in the slapd configuration

HASHPASS=‘/opt/rudder/sbin/slappasswd -s $PASS‘
sed -i "s%^rootpw.*$%rootpw $HASHPASS%" /opt/rudder/etc/openldap/slapd.conf

• Update the password in the rudder-web.properties file

sed -i "s%^ldap.authpw.*$%ldap.authpw=$PASS%" /opt/rudder/etc/rudder-web.properties

Rudder User Documentation 56 / 89

11.2.3 Configuration of the WebDAV access password

This time, the procedure is a bit more tricky, as you will have to update the Technique library as well as a configuration file.

Here is a semi-automated procedure:

• Generate a decently fair password. You can use an arbitrary one too.

PASS=‘dd if=/dev/urandom count=128 bs=1 2>&1 | md5sum | cut -b-12‘

• Update the password in the apache htaccess file

Tip
On some systems, especially SuSE ones, htpasswd is called as "htpasswd2"

htpasswd -b /opt/rudder/etc/htpasswd-webdav rudder $PASS

• Update the password in Rudder’s system Techniques

cd /var/rudder/configuration-repository/techniques/system/common/1.0/
sed -i "s%^.*davpw.*$% \"davpw\" string => \"$PASS\"\;%" site.st
git commit -m "Updated the rudder WebDAV access password" site.st

• Update the Rudder Directives by either reloading them in the web interface (in the "Configuration Management/Techniques"
tab) or restarting jetty (NOT recommended)

11.3 Policy generation

Each time a change occurs in the Rudder interface, having an impact on the CFEngine promises needed by a node, it is necessary
to regenerate the modified promises for every impacted node. By default this process is launched after each change.

11.3.1 Regenerate now button

The button Regenerate now on the top right of the screen permit you to force the regeneration of the promises. As changes
in the inventory of the nodes are not automatically taken into account by Rudder, this feature can be useful after some changes
impacting the inventory information.

11.4 Technique creation

Rudder provides a set of pre-defined Techniques that cover some basic configuration and system administration needs. You
can also create your own Techniques, to implement new functionality or configure new services. This paragraph will walk you
through this process.

Rudder User Documentation 57 / 89

11.4.1 Prequisites

To create a Technique, you’ll need a few things:

CFEngine knowledge Rudder’s Techniques are implemented using CFEngine. Rudder takes care of a lot of the work of using
CFEngine, but you’ll need to have a reasonable understanding of the CFEngine syntax.

Rudder installation for testing To be able to test your new Technique, you’ll need a working Rudder installation (at least a
server and a node).

Text editor The only other tool you need is your favorite text editor!

11.4.2 Define your objective

Before starting to create a new Technique, have you checked that it doesn’t already exist in Rudder? The full list of current
Techniques is available from GitHub, at GitHub rudder-techniques repository.

OK, now we’ve got that over with, let’s go on.

A Technique should be an abstract configuration. This means that your Technique shouldn’t just configure something one way, but
instead it should implement how to configure something, and offer options for users to choose what way they want it configured.
Before starting, make sure you’ve thought through what you want to create.

Here’s a quick checklist to help:

• Do you need to install packages?

• Do you need to create or edit configuration files?

• Do you need to copy files from a central location?

• Do you need to launch processes or check that they’re running?

• Do you need to run commands to get things working?

Once you’ve made a list of what needs doing, consider what options could be presented in the user interface, when you create a
Directive from your new Technique. Intuitively, the more variables there are, the more flexible your Technique will be. However,
experience shows that making the Technique too configurable will actually make it harder to use, so a subtle balance comes in to
play here.

At this stage, make a list of all the variables that should be presented to users configuring a Directive from your Technique.

11.4.3 Initialize your new Technique

The simplest way to create a new Technique and be able to test it as you work is to start on a Rudder server. Open a terminal and
connect to your Rudder server by ssh, and cd into the directory where Techniques are stored:

$ cd /var/rudder/configuration-repository/techniques

Under this directory, you’ll find a set of categories, and sub-categories. Before creating your Technique, choose a category to put
it in, and change to that directory. For example:

$ cd applications

You can consult the description of each category by looking at the category.xml file in each directory. For this example:

$ cat category.xml
<xml>

<name>Application management</name>
<description>This category contains Techniques designed to install,

configure and manage applications</description>
</xml>

http://github.com/normation/rudder-techniques/

Rudder User Documentation 58 / 89

Once you’ve decided on a category, it’s time to create the basic skeleton of your Technique. The technical name for your
Technique is it’s directory name, so choose wisely:

mkdir sampleTechnique

All directories under this one are version numbers. Let’s start with a simple 1.0 version. From now on, we’ll work in this
directory.

mkdir sampleTechnique/1.0
cd sampleTechnique/1.0

Now, you need a minimum of two files to get your Technique working:

metadata.xml This file describes the Technique, and configures how it will be displayed in the web interface.

st files These files are templates for CFEngine configuration files. You need at least one, but can have as many as you like.
Rudder processes them to generate .cf files ready to be used by CFEngine.

To get started, copy and paste these sample files, or download them from GitHub:

metadata.xml (original file: technique-metadata-sample.xml)

include::technique-metadata-sample.xml

sample_technique.st (original file: technique-st-sample.xml)

include::technique-st-sample.xml

11.4.3.1 Define variables

WORK IN PROGRESS Define metadata. Enter the variables in sections in the metadata.xml file. Cf http://www.rudder-
project.org/foswiki/Development/PolicyTemplateXML

11.4.3.2 First test in the Rudder interface

Load the new Technique into Rudder and check that the variables and sections are displayed as you expect.

11.4.4 Implement the behavior

WORK IN PROGRESS Write CFEngine promises to implement the behavior that your Template should have.

11.4.4.1 Read in the variables from Rudder

WORK IN PROGRESS Using StringTemplate notation. . . Cf http://www.rudder-project.org/foswiki/Development/Technique

11.4.4.2 Add reporting

WORK IN PROGRESS The reports format Cf http://www.rudder-project.org/foswiki/Development/ReportsInTechniques

https://github.com/normation/rudder-techniques/blob/master/technique-metadata-sample.xml
https://github.com/normation/rudder-techniques/blob/master/technique-st-sample.xml
http://www.rudder-project.org/foswiki/Development/PolicyTemplateXML
http://www.rudder-project.org/foswiki/Development/PolicyTemplateXML
http://www.rudder-project.org/foswiki/Development/
http://www.rudder-project.org/foswiki/Development/ReportsIn

Rudder User Documentation 59 / 89

11.5 REST API

Rudder can be used as a web service using a REST API.

This documentation covers the version 1 of Rudder’s API, that has been present since Rudder 2.4.

The version 2 has now been implemented, which is much more complete, in Rudder 2.7, and has a dedicated documentation
available here: http://www.rudder-project.org/rudder-api-doc/

Warning
The version 1 is to be considered legacy and should not be used anymore. Please migrate to version 2 to benefit from
the new authentication features and more complete existing methods.

11.5.1 Default setup

Access to REST API can be either using Rudder authentication, either unauthenticated, using authentication mechanisms set
elsewhere, for instance at Apache level.

11.5.1.1 Rudder Authentication

By default, the access to the REST API is open to users not authenticated in Rudder.

The method of authentication can be configured in /opt/rudder/etc/rudder-web.properties

rudder.rest.allowNonAuthenticatedUser=true

11.5.1.2 Apache access rules

By default, the REST API is exposed for localhost only, at http://localhost/rudder/api.

Example 11.1 Example usage of non authenticated REST API
Unrestricted access can be granted to local scripts accessing to localhost, whereas remote access to the REST API will be
either denied, or restricted through autentication at apache level.

11.5.1.3 User for REST actions

Actions done using the REST API are logged by default as run by the user UnknownRestUser.

To change the name of this user, add following header to the HTTP request:

X-REST-USERNAME: MyConfiguredRestUser

If the REST API is authenticated, the authenticated user name will be used in the logs.

11.5.2 Status

http://localhost/rudder/api/status Check if Rudder server is up and return OK. If Rudder server is not re-
sponding, an error is displayed.

http://www.rudder-project.org/rudder-api-doc/

Rudder User Documentation 60 / 89

11.5.3 Promises regeneration

http://localhost/rudder/api/deploy/reload Regenerate promises (same action as the Regenerate now
button).

11.5.4 Dynamic groups regeneration

http://localhost/rudder/api/dyngroup/reload Check all dynamic groups for changes. If changes have oc-
curred, regenerate the groups in the LDAP and the CFEngine promises.

11.5.5 Technique library reload

http://localhost/rudder/api/techniqueLibrary/reload Check the technique library for changes. If changes
have occurred, reload the technique library in memory and regenerate the CFEngine promises.

11.5.6 Archives manipulation

Various methods are available to import and export items:

11.5.6.1 Archiving:

http://localhost/rudder/api/archives/archive/groups Export node groups and node groups categories.

http://localhost/rudder/api/archives/archive/directives Export policy library (categories, active tech-
niques, directives).

http://localhost/rudder/api/archives/archive/rules Export rules

http://localhost/rudder/api/archives/archive/full Export everything

11.5.6.2 Listing:

http://localhost/rudder/api/archives/list/groups List available archives datetime for groups (the date-
time is in the format awaited for restoration).

http://localhost/rudder/api/archives/list/directives List available archives datetime for policy li-
brary (the datetime is in the format awaited for restoration).

http://localhost/rudder/api/archives/list/rules List available archives datetime for configuration rules
(the datetime is in the format awaited for restoration).

http://localhost/rudder/api/archives/list/full List available archives datetime for full archives (the date-
time is in the format awaited for restoration).

11.5.6.3 Restoring a given archive:

http://localhost/rudder/api/archives/restore/groups/datetime/[archiveId] Restore given groups
archive.

http://localhost/rudder/api/archives/restore/directives/datetime/[archiveId] Restore given
directives archive.

http://localhost/rudder/api/archives/restore/rules/datetime/[archiveId] Restore given rules
archive.

http://localhost/rudder/api/archives/restore/full/datetime/[archiveId] Restore everything.

Rudder User Documentation 61 / 89

11.5.6.4 Restoring the latest available archive (from a previously archived action, and so from a Git tag):

http://localhost/rudder/api/archives/restore/groups/latestArchive
http://localhost/rudder/api/archives/restore/directives/latestArchive
http://localhost/rudder/api/archives/restore/rules/latestArchive
http://localhost/rudder/api/archives/restore/full/latestArchive

11.5.6.5 Restoring the latest available commit (use Git HEAD):

http://localhost/rudder/api/archives/restore/groups/latestCommit
http://localhost/rudder/api/archives/restore/directives/latestCommit
http://localhost/rudder/api/archives/restore/rules/latestCommit
http://localhost/rudder/api/archives/restore/full/latestCommit

11.5.6.6 Downloading a ZIP archive

The REST API allows to download a ZIP archive of groups, directives and rules (as XML files) for a given Git commit ID (the
commit HASH).

It is not designed to query for available Git commit ID, so you will need to get it directly from a Git tool (for example with Git
log) or from the list API.

Note that that API allows to download ANY Git commit ID as a ZIP archive, not only the one corresponding to Rudder archives.

Note 2: you should rename the resulting file with a ".zip" extension as most zip utilities won’t work correctly on a file not having
it.

http://localhost/rudder/api/archives/zip/groups/[GitCommitId] Download groups for the given Com-
mit ID as a ZIP archive.

http://localhost/rudder/api/archives/zip/directives/[GitCommitId] Download directives for the
given Commit ID as a ZIP archive.

http://localhost/rudder/api/archives/zip/rules/[archiveId] Download rules for the given Commit
ID as a ZIP archive.

http://localhost/rudder/api/archives/zip/full/[archiveId] Download groups, directives and rules
for the given Commit ID as a ZIP archive.

11.6 Relay servers

Relay servers can be added to Rudder, for example to manage a DMZ or to isolate specific nodes from the main environment for
security reasons.

Relay server’s purpose is to solve a simple problem: sometimes, one would want to manage multiple networks from Rudder,
without having to allow all the subnet access to the other for security reasons. A solution for this would be to have a kind of
"Rudder" proxy that would be relaying information between the subnet and the main Rudder server. This is the reason relay
servers were created.

Using a relay, you are able to:

• Separate your Rudder architecture into separate entities that still report to one server

• Prevent laxist security exceptions to the Rudder server

• Ease maintenance

Rudder User Documentation 62 / 89

The first part is to be done on the machine that will become a relay server. The procedure will:

• Add the machine as a regular node

• Configure the relay components (Syslog, Apache HTTPd, CFEngine)

• Switch this node to the relay server role (from the root server point of view)

11.6.1 Installation procedure - On the relay

11.6.1.1 Install Rudder agent

To begin, please install a regular Rudder agent on the OS.

See here for the complete reference about agent installation.

To complete this step, please make sure that your node is configured successfully and appears in your Rudder web interface.

11.6.1.2 Install the required dependencies and enable required modules

RHEL-like (RHEL, CentOS, Scientific)
yum install httpd httpd-tools rsyslog
#~All required modules are enabled by default

#~Debian-like (Debian, Ubuntu)
apt-get install apache2 apache2-utils rsyslog
a2enmod dav dav_fs
a2dissite default

#~SuSE
zypper install apache2 apache2-utils rsyslog
a2enmod dav dav_fs

11.6.1.3 Create the necessary directory and adjust the permissions

mkdir -p /opt/rudder/etc /var/log/rudder/apache2 /var/rudder/share

for i in /var/rudder/inventories/incoming /var/rudder/inventories/accepted-nodes-updates
do

mkdir -p ${i}
chmod -R 1770 ${i}
for group in apache www-data www; do

if getent group ${group} > /dev/null; then chown -R root:${group} ${i}; ←↩
break; fi

done
done

for i in /opt/rudder/etc/htpasswd-webdav-initial /opt/rudder/etc/htpasswd-webdav
do

/usr/bin/htpasswd -bc ${i} rudder rudder
done

touch /opt/rudder/etc/rudder-networks.conf

Rudder User Documentation 63 / 89

11.6.1.4 Please create the appropriate file for your OS, and copy the following content in it

• /etc/httpd/conf.d/rudder-default.conf file on RHEL-like

• /etc/apache2/sites-enabled/rudder-default file on Debian-like

• /etc/apache2/vhosts.d/rudder-default.conf file on SuSE

<VirtualHost *:80>
ServerAdmin webmaster@localhost
Expose the server UUID through http
Alias /uuid /opt/rudder/etc/uuid.hive
<Directory /opt/rudder/etc>

Order deny,allow
Allow from all

</Directory>
WebDAV share to receive inventories
Alias /inventories /var/rudder/inventories/incoming
<Directory /var/rudder/inventories/incoming>

DAV on
AuthName "WebDAV Storage"
AuthType Basic
AuthUserFile /opt/rudder/etc/htpasswd-webdav-initial
Require valid-user
Order deny,allow
This file is automatically generated according to
the hosts allowed by rudder.
Include /opt/rudder/etc/rudder-networks.conf
<LimitExcept PUT>

Order allow,deny
Deny from all

</LimitExcept>
</Directory>
WebDAV share to receive inventories
Alias /inventory-updates /var/rudder/inventories/accepted-nodes-updates
<Directory /var/rudder/inventories/accepted-nodes-updates>

DAV on
AuthName "WebDAV Storage"
AuthType Basic
AuthUserFile /opt/rudder/etc/htpasswd-webdav
Require valid-user
Order deny,allow
This file is automatically generated according to
the hosts allowed by rudder.
Include /opt/rudder/etc/rudder-networks.conf
<LimitExcept PUT>

Order allow,deny
Deny from all

</LimitExcept>
</Directory>
Logs
ErrorLog /var/log/rudder/apache2/error.log
LogLevel warn
CustomLog /var/log/rudder/apache2/access.log combined

</VirtualHost>

Finally, restart Apache to take these changes into account:

RHEL-like (RHEL, CentOS, Scientific)
service httpd restart

Rudder User Documentation 64 / 89

#~Debian-like (Debian, Ubuntu) and SuSE
service apache2 restart

11.6.2 Installation procedure - On the root server

11.6.2.1 Set the node as a Rudder relay

Launch the rudder-node-to-relay script on the root server, supplying the UUID of the host to be added as a relay to it:

/opt/rudder/bin/rudder-node-to-relay aaaaaaaa-bbbb-cccc-dddd-eeeeeeee

11.6.3 Result

When every step has completed successfully:

• The Rudder root server will recognize the new node as a relay

• It will generate specific promises for the relay

• The relay will update and switch to his new role

This is an example of node details pane showing a relay server. Note the "Role: Rudder relay server" part that shows that the
machine has successfully changed from a node to a relay.

Figure 11.2: Rudder relay node

Rudder User Documentation 65 / 89

11.6.4 Adding nodes to a relay server

When you have at least one relay, you will likely want to add nodes on it.

You then have two possible cases:

• You want to switch an already existing node to the relay

• You want to add a new one

The procedure on both cases is the same, you have to:

• Create / update the file /var/rudder/cfengine-community/policy_server.dat with the IP address or the fully qualified domain
name of the relay server (instead of the root server)

echo "rudder-relay.example.com" > /var/rudder/cfengine-community/policy_server.dat

• Trigger an inventory immediately to make sure the node is registered correctly

/var/rudder/cfengine-community/bin/cf-agent -KI -D force_inventory

After those steps, the node should be registered correctly on your Rudder infrastructure.

11.7 Server migration

11.7.1 What files you need

To copy a server on a new location, you need at least to keep the configuration applied by your server.

You need to keep :

• Rules

• Directives

• Groups

• Techniques

If you keep your actual nodes, you also have to handle with CFEngine keys. New nodes won’t have problems with the new
server.

If your new server has a different IP, you will have to change it on your nodes.

You will have to accept nodes

There are multiple ways to migrate your server, here are the best we propose you.

11.7.2 Handle configuration files

11.7.2.1 Copy /var/rudder/configuration-repository

The simplest way to migrate your server to a new one is to copy /var/rudder/configuration-repository from your former server to
the new one. In this folder you will find all your Rules/Groups/Directives/Techniques are stored. By copying that folder you will
keep the git tree used by your server and keep your comments.

Rudder User Documentation 66 / 89

• Copy /var/rudder/configuration-repository to your new server

• In Rudder UI Go to Administration > Policy Server

• Reload the Technique Library

• Go to Administration > Archives

• In Global Archive, "Choose an archive" select Latest git commit

• Click on Restore everything

• After deployement, your configuration should be restored

11.7.2.2 Use Archive feature of Rudder

Alternatively, you can follow the Archive/Import procedures described in Archives

11.7.3 Handle CFEngine keys

11.7.3.1 Keep your CFEngine keys

Copy /var/rudder/cfengine-community/ppkeys to your new server

11.7.3.2 Change CFEngine keys

On every node that were using your old rudder server, you will have to erase the server public key (root-MD5=*.pub file)

Run rm /var/rudder/cfengine-community/ppkeys/root-MD5=*.pub

On the next run of rudder-agent, nodes will get the new public key of the server

11.7.4 On your nodes

If your server has changed of IP address you have to modify /var/rudder/cfengine-community/policy_server.
dat with the new address

Then you force your nodes to send their inventory while running /var/rudder/cfengine-community/bin/cf-age
nt -KI -D force_inventory

In your Rudder UI, you should now be able to accept the nodes.

Your configuration is now totally migrated.

11.8 Mirroring Rudder repositories

You can also use your own packages repositories server instead of www.rudder-project.org if you want. This is possible with a
synchronization from our repositories with rsync.

We’ve got public read only rsync modules rudder-apt and rudder-rpm.

To synchronize with the APT repository just type:

rsync -av www.rudder-project.org::rudder-apt /your/local/mirror

To synchronize with the RPM repository just type:

rsync -av www.rudder-project.org::rudder-rpm /your/local/mirror

Finally, you have to set up these directories (/your/local/mirror) to be shared by HTTP by a web server (i.e., Apache, nginx,
lighttpd, etc. . .).

Rudder User Documentation 67 / 89

Chapter 12

Reference

This chapter contains the reference Rudder configuration files

12.1 Rudder Server data workflow

To have a better understanding of the Archive feature of Rudder, a description of the data workflow can be useful.

All the logic of Rudder Techniques is stored on the filesystem in /var/rudder/configuration-repository/techn
iques. The files are under version control, using git. The tree is organized as following :

1. At the first level, techniques are classified in categories: applications, fileConfiguration, fileDistribution, jobScheduling,
system, systemSettings. The description of the category is included in category.xml.

2. At the second and third level, Technique identifier and version.

3. At the last level, each technique is described with a metadata.xml file and one or several CFEngine template files
(name ending with .st).

An extract of Rudder Techniques filesystem tree

+-- techniques
| +-- applications
| | +-- apacheServer
| | | +-- 1.0
| | | +-- apacheServerConfiguration.st
| | | +-- apacheServerInstall.st
| | | +-- metadata.xml
| | +-- aptPackageInstallation
| | | +-- 1.0
| | | +-- aptPackageInstallation.st
| | | +-- metadata.xml
| | +-- aptPackageManagerSettings
| | | +-- 1.0
| | | +-- aptPackageManagerSettings.st
| | | +-- metadata.xml
| | +-- category.xml
| | +-- openvpnClient
| | | +-- 1.0
| | | +-- metadata.xml
| | | +-- openvpnClientConfiguration.st
| | | +-- openvpnInstall.st

Rudder User Documentation 68 / 89

At Rudder Server startup, or after the user has requested a reload of the Rudder Techniques, each metadata.xml is mapped
in memory, and used to create the LDAP subtree of Active Techniques. The LDAP tree contains also a set of subtrees for Node
Groups, Rules and Node Configurations.

At each change of the Node Configurations, Rudder Server creates CFEngine draft policies (Cf3PolicyDraft) that are stored
in memory, and then invokes cf-clerk. cf-clerk finally generates the CFEngine promises for the Nodes.

Rudder User Documentation 69 / 89

Figure 12.1: Rudder data workflow

Rudder User Documentation 70 / 89

12.2 Rudder Agent workflow

In this chapter, we will have a more detailed view of the Rudder Agent workflow. What files and processes are created or modified
at the installation of the Rudder Agent? What is happening when a new Node is created? What are the recurrent tasks performed
by the Rudder Agent? How does the Rudder Server handle the requests coming from the Rudder Agent? The Rudder Agent
workflow schema summarizes the process that will be described in the next pages.

Rudder User Documentation 71 / 89

Figure 12.2: Rudder Agent workflow

Let’s consider the Rudder Agent is installed and configured on the new Node.

The Rudder Agent is regularly launched and performs following tasks sequentially, in this order:

Rudder User Documentation 72 / 89

12.2.1 Request data from Rudder Server

The first action of Rudder Agent is to fetch the tools directory from Rudder Server. This directory is located at /opt/
rudder/share/tools on the Rudder Server and at /var/rudder/tools on the Node. If this directory is already
present, only changes will be updated.

The agent then try to fetch new Applied Policies from Rudder Server. Only requests from valid Nodes will be accepted. At first
run and until the Node has been validated in Rudder, this step fails.

12.2.2 Launch processes

Ensure that the CFEngine community daemons cf-execd and cf-serverd are running. Try to start these daemons if they
are not already started.

Daily between 5:00 and 5:05, relaunch the CFEngine Community daemons cf-execd and cf-serverd.

Add a line in /etc/crontab to launch cf-execd if it’s not running.

Ensure again that the CFEngine community daemons cf-execd and cf-serverd are running. Try to start these daemons if
they are not already started.

12.2.3 Identify Rudder Root Server

Ensure the curl package is installed. Install the package if it’s not present.

Get the identifier of the Rudder Root Server, necessary to generate reports. The URL of the identifier is http://Rudder_root_server/uuid

12.2.4 Inventory

If no inventory has been sent since 8 hours, or if a forced inventory has been requested (class force_inventory is defined),
do and send an inventory to the server.

user@node:~$ sudo /var/rudder/cfengine-community/bin/cf-agent -KI -Dforce_inventory

No reports are generated until the Node has been validated in Rudder Server.

12.2.5 Syslog

After validation of the Node, the system log service of the Node is configured to send reports regularly to the server. Supported
system log providers are: syslogd, rsyslogd and syslog-ng.

12.2.6 Apply Directives

Apply other policies and write reports locally.

12.3 Configuration files for a Node

/etc/default/rudder-agent

#==
Configuration sample for Cfengine Community init script
#==

Cfengine Community directory and files
CFENGINE_COMMUNITY_PATH="/opt/rudder"

Rudder User Documentation 73 / 89

CFENGINE_COMMUNITY_VAR_PATH="/var/rudder/cfengine-community"
CFENGINE_COMMUNITY_RUN[CFEXECD]="1"
CFENGINE_COMMUNITY_RUN[CFSERVERD]="1"
CFENGINE_COMMUNITY_RUN[CFMONITORD]="0"
CFENGINE_COMMUNITY_BIN[CFEXECD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-execd"
CFENGINE_COMMUNITY_BIN[CFSERVERD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-serverd"
CFENGINE_COMMUNITY_BIN[CFMONITORD]="$CFENGINE_COMMUNITY_VAR_PATH/bin/cf-monitord"
CFENGINE_COMMUNITY_PARAMS[CFEXECD]=""
CFENGINE_COMMUNITY_PARAMS[CFSERVERD]=""
CFENGINE_COMMUNITY_PARAMS[CFMONITORD]=""
CFENGINE_COMMUNITY_PID_FILE[CFEXECD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-execd.pid"
CFENGINE_COMMUNITY_PID_FILE[CFSERVERD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-serverd.pid"
CFENGINE_COMMUNITY_PID_FILE[CFMONITORD]="$CFENGINE_COMMUNITY_VAR_PATH/cf-monitord.pid"

Other
TIMEOUT="60" # Max time to start/stop processes
SYSLOG_FACILITY="local6"
PS_COMMAND="ps -efww" # This ensures full width for ps output but doesn’t work on Solaris ←↩

- use "ps -ef"

12.4 Configuration files for Rudder Server

/opt/rudder/etc/htpasswd-webdav

rudder:vHBLbrOyfEWFg

/opt/rudder/etc/inventory-web.properties

##
Default configuration file for the application.
You can define the location of this file by
setting "inventoryweb.configFile" JVM property,
for example:
java -Dinventoryweb.configFile=/opt/rudder/etc/inventory-web.conf
##

#
LDAP related configuration
#

LDAP directory connection information
ldap.host=localhost
ldap.port=389
ldap.authdn=cn=Manager,cn=rudder-configuration
ldap.authpw=secret

inventories information
ldap.inventories.software.basedn=ou=Inventories,cn=rudder-configuration
ldap.inventories.accepted.basedn=ou=Accepted Inventories,ou=Inventories,cn=rudder- ←↩

configuration
ldap.inventories.pending.basedn=ou=Pending Inventories,ou=Inventories,cn=rudder- ←↩

configuration

where to store LDIF inventory versions
history.inventories.rootdir=/var/rudder/inventories/historical

where to store debug information about LDAP modification requests
ldif.tracelog.rootdir=/var/rudder/inventories/debug

/opt/rudder/etc/logback.xml

Rudder User Documentation 74 / 89

<configuration>
<!--
This is the default logging configuration file. It will be used if you
didn’t specify the "logback.configurationFile" JVM option.
For example, to use a loggin configuration file in "/etc/rudder":
java ... -Dlogback.configurationFile=/etc/rudder/logback.xml

Full information about the file format is available on the project
web site: http://logback.qos.ch/manual/configuration.html#syntax
-->

<!--
Appender configuration - where&how to write logs in SLF4J speaking.
===
Our default configuration : log on stdout appender so that our logs
are managed by the container log system (and so, if Tomcat/Jetty/etc
logs are stored in files and rotated, so are our log information).

Log format is:
- date/time/thread of the log on 30 chars (fixed)
- log level on 5 char (fixed)
- name of the logger (and so the class) on 36 chars, with

package name folding
- log message follows
- limit exception trace to 30 calls

You should not have to modify that.
-->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

<Pattern>%-30(%d{HH:mm:ss.SSS} [%thread]) %-5level %logger{36} - %msg%n%xEx{30}</ ←↩
Pattern>

</encoder>
</appender>

<!--
Manage the global log level of the application.
===

That level will be used for all logs that are not
more precisely defined below (i.e for whom there is
no <logger name="...." level="..."/> defined)

Available log levels are:
trace < debug < info < warn < error < off

"off" completely shut down logging for the given logger

Do not modify the appender part if you don’t know what you
are doing.

-->

<root level="info">
<appender-ref ref="STDOUT" />

</root>

<!--
Debug LDAP write operations
===========================

This logger allow to trace LDAP writes operation and
to output them in LDIF file (the output directory path

Rudder User Documentation 75 / 89

is configured in the main configuration file)
The trace is done only if level is set to "trace"
WARNING: setting the level to trace may have major
performance issue, as A LOT of LDIF files will have
to be written.
You should activate that log only for debugging purpose.

-->

<logger name="trace.ldif.in.file" level="off" />

<!-- == -->
<!-- YOU SHOULD NOT HAVE TO CHANGE THINGS BELOW THAT LINE -->
<!-- == -->

<!--
Display AJAX information of the Web interface
===
Whatever the root logger level is, you are likely
to not wanting these information.
Set the level to debug if you are really interested
in AJAX-related debug messages.

-->
<logger name="comet_trace" level="info" />

<!--
Spring Framework log level
==========================
We really don’t want to see SpringFramework debug info,
whatever the root logger level is - it’s an internal
component only.

-->
<logger name="org.springframework" level="warn" />

<!--
We don’t need to have timing information for each
HTTP request.
If you want to have these information, set the log
level for that logger to (at least) "info"
-->

<logger name="net.liftweb.util.TimeHelpers" level="warn" />

</configuration>

/opt/rudder/etc/openldap/slapd.conf

#
See slapd.conf(5) for details on configuration options.
This file should NOT be world readable.
#
include /opt/rudder/etc/openldap/schema/core.schema
include /opt/rudder/etc/openldap/schema/cosine.schema
include /opt/rudder/etc/openldap/schema/nis.schema
include /opt/rudder/etc/openldap/schema/dyngroup.schema
include /opt/rudder/etc/openldap/schema/inventory.schema
include /opt/rudder/etc/openldap/schema/rudder.schema

loglevel none stats

Define global ACLs to disable default read access.

Do not enable referrals until AFTER you have a working directory

Rudder User Documentation 76 / 89

service AND an understanding of referrals.
#referral ldap://root.openldap.org

pidfile /var/rudder/run/slapd.pid
argsfile /var/rudder/run/slapd.args

Load dynamic modules for backends and overlays:
modulepath /opt/rudder/libexec/openldap/
moduleload back_hdb.la
moduleload back_monitor.la
moduleload dynlist.la

Sample security restrictions
Require integrity protection (prevent hijacking)
Require 112-bit (3DES or better) encryption for updates
Require 63-bit encryption for simple bind
security ssf=1 update_ssf=112 simple_bind=64

Sample access control policy:
Root DSE: allow anyone to read it
Subschema (sub)entry DSE: allow anyone to read it
Other DSEs:
Allow self write access
Allow authenticated users read access
Allow anonymous users to authenticate
Directives needed to implement policy:
access to dn.base="" by * read
access to dn.base="cn=Subschema" by * read
access to *
by self write
by users read
by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!

##
Global overlays (available on all databases)
##
overlay dynlist
dynlist-attrset dynGroup memberURL

###
BDB database definitions
###

database hdb
suffix "cn=rudder-configuration"
rootdn "cn=Manager,cn=rudder-configuration"
Cleartext passwords, especially for the rootdn, should
be avoid. See slappasswd(8) and slapd.conf(5) for details.
Use of strong authentication encouraged.
rootpw secret
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd and slap tools.
Mode 700 recommended.
directory /var/rudder/ldap/openldap-data
Checkpoint database every 128k written or every 5 minutes
checkpoint 0 1

Rudder User Documentation 77 / 89

Indices to maintain
index objectClass eq
index confirmed eq
index uuid,machineUuid,nodeId,machine,hostedVm,container,node,software eq
index mountPoint,softwareVersion,cn eq
index member eq

database monitor

/opt/rudder/etc/reportsInfo.xml

<ReportsInfoStore>
</ReportsInfoStore>

/opt/rudder/etc/rudder-users.xml

<!--
Authorizations
You must define a role attribute to every user you add.

A role is defined by a list of authorizations separated by commas.
There are two kind of authorizations :

Predefined authorizations

There are 7 predefined authorization levels:
- administrator (all rights)
- administration_only (all administration)
- user (all node, configuration)
- configuration(all configuration)
- read_only (read all)
- compliance(read rule)
- inventory (read node)

There is three predefined roles for change request rights:
- validator (Can valid changes)
- deployer (Can deploy changes)
- workflow (Both deployer and validator)

The administrator role include the workflow ones

Custom authorizations

Custom authorisations are composed of two elements:
- A type of authorization, which define what is concerned

there’s is 10 types, which are : node, group, deployement,
administration, configuration, rule, technique, directive,
validator and deployer.

- A level of authorization,
levels are: read, write, edit, all(read, write, edit)
They are not inclusive (write and edit don’t include read,)
a custom authorisation has a format like that "type_level" like "node_all", " ←↩

group_read"

Examples

<user name="alice" password="xxxxxxx" role="administrator" />
<user name="bob" password="xxxxxxx" role="read_only"/>
<user name="carol" password="xxxxxxx" role="user,validator"/>

<user name="custom" password="custom" role="node_all,configuration_read,rule_read, ←↩
rule_edit,directive_read,technique_read">

- can read everything but administration,groups and deployement
- can do everything about node

Rudder User Documentation 78 / 89

exemple of bad lines
<user name="" password="secret2" role="administrator"/>
<user name="name" password="" role="administrator"/>

-->

/opt/rudder/etc/rudder-web.properties

##
Default configuration file for the application.
You can define the location of the file by
setting "rudder.configFile" JVM property,
for example:
java -Drudder.configFile=/opt/rudder/etc/rudder-web.conf
##

##
Application information
##
#define that property if you are behind a proxy
#or anything that make the URL served by the
#servlet container be different than the public one
#note: if defined, must not end with /
#let blank to use default value
base.url=http://rudder-debian/rudder

##
LDAP properties
##

LDAP directory connection information
ldap.host=localhost
ldap.port=389
ldap.authdn=cn=manager,cn=rudder-configuration
ldap.authpw=secret

#inventories information
ldap.inventories.software.basedn=ou=Inventories, cn=rudder-configuration
ldap.inventories.accepted.basedn=ou=Accepted Inventories, ou=Inventories, cn=rudder- ←↩

configuration
ldap.inventories.pending.basedn=ou=Pending Inventories, ou=Inventories, cn=rudder- ←↩

configuration

#Base DN for Rudder Data
ldap.rudder.base=ou=Rudder, cn=rudder-configuration

#Base DN (the ou=Node is already given by the DIT)
ldap.node.base=cn=rudder-configuration

directory where LDIF trace of LDAP modify request are
stored when loglevel is ’trace’
ldif.tracelog.rootdir=/var/rudder/inventories/debug

##
Other Rudder Configuration properties
##

#
directory used as root directory to store LDIF dump
of historised inventories

Rudder User Documentation 79 / 89

history.inventories.rootdir=/var/rudder/inventories/historical

##
Upload directory
##
directory where new uploaded files are stored
upload.root.directory=/var/rudder/files/

##
Emergency stop
##
path to the script/binary that allows emergency orchestrator stop
bin.emergency.stop=/opt/rudder/bin/cfe-red-button.sh

##
Promise writer directory configuration
##
rudder.dir.config=/opt/rudder/etc/
rudder.dir.policyPackages=/opt/rudder/share/policy-templates
rudder.dir.licensesFolder=/opt/rudder/etc/licenses
rudder.dir.policies=/var/rudder/
rudder.dir.backup=/var/rudder/backup/
rudder.dir.dependencies=/var/rudder/tools/
rudder.dir.sharing=/var/rudder/files/
rudder.dir.lock=/var/rudder/lock/
rudder.endpoint.cmdb=http://localhost:8080/endpoint/upload/

Port used by the community edition
rudder.community.port=5309

rudder.jdbc.driver=org.postgresql.Driver
rudder.jdbc.url=jdbc:postgresql://localhost:5432/rudder
rudder.jdbc.username=rudder
rudder.jdbc.password=Normation

#
Destination directory for files distributed
with the copyFile policy
#
policy.copyfile.destination.dir=/some/default/destination/directory/

#
Command line to check the promises generated
#
rudder.community.checkpromises.command=/var/rudder/cfengine-community/bin/cf-promises
rudder.nova.checkpromises.command=/bin/true

#
Interval of time between two dynamic group update batch
Expect an int (amount of minutes)
#
rudder.batch.dyngroup.updateInterval=5

#
Interval of time (in seconds) between two checks
for a policy template library update (a commit)
300s = 5minutes
#

Rudder User Documentation 80 / 89

rudder.batch.ptlib.updateInterval=300

#
Configure the refs path to use for the git repository for
the Policy Template Reference Library.
The default is to use "refs/heads/master" (the local master
branche).
You have to use the full ref path.
rudder.ptlib.git.refs.path=refs/heads/master

Rudder User Documentation 81 / 89

Chapter 13

Handbook

This chapter contains some tips and tricks you might want to know about using Rudder in a production environment, with some
useful optimizations and procedures.

13.1 Database maintenance

Rudder uses two backends to store information as of now: LDAP and SQL

To achieve this, OpenLDAP and PostgreSQL are installed with Rudder.

However, like every database, they require a small amount of maintenance to keep operating well. Thus, this chapter will
introduce you to the basic maintenance procedure you might want to know about these particular database implementations.

13.1.1 Automatic PostgreSQL table maintenance

Rudder uses an automatic mechanism to automate the archival and pruning of the reports database.

By default, this system will:

• Archive reports older that 3 days (30 in Rudder 2.6)

• Remove reports older than 90 days

It thus reduces the work overhead by only making Rudder handle relevant reports (fresh enough) and putting aside old ones.

This is obviously configurable in /opt/rudder/etc/rudder-web.properties, by altering the following configuration elements:

• rudder.batch.reportscleaner.archive.TTL: Set the maximum report age before archival

• rudder.batch.reportscleaner.delete.TTL: Set the maximum report age before deletion

The default values are OK for systems under moderate load, and should be adjusted in case of excessive database bloating.

The estimated disk space consumption, with a 5 minute agent run frequency, is 150 to 400 kB per Directive, per day and per
node, which is roughly 5 to 10 MB per Directive per month and per node.

Thus, 25 directives on 100 nodes, with a 7 day log retention policy, would take 2.5 to 10 GB, and 25 directives on 1000 nodes
with a 1 hour agent execution period and a 30 day log retention policy would take 9 to 35 GB.

Rudder User Documentation 82 / 89

13.1.2 PostgreSQL database vacuum

In some cases, like a large report archiving or deletion, the Rudder interface will still display the old database size. This is
because even if the database has been cleaned as requested, the physical storage backend did not reclaim space on the hard drive,
resulting in a "fragmented" database. This is not an issue, as PostgreSQL handles this automatically, and new reports sent by
the nodes to Rudder will fill the blanks in the database, resulting in a steady growth of the database. This task is handled by the
autovacuum process, which periodically cleans the storage regularly to prevent database bloating.

However, to force this operation to free storage immediately, you can trigger a "vacuum full" operation by yourself, however
keep in mind that this operation is very disk and memory intensive, and will lock both the Rudder interface and the reporting
system for quite a long time with a big database.

Manual vacuuming using the psql binary

#~You can either use sudo to change owner to the postgres user, or use the rudder connexion ←↩
credentials.

#~With sudo:
sudo -u postgres psql -d rudder

#~With rudder credentials, it will ask the password in this case:
psql -u rudder -d rudder -W

And then, when you are connected to the rudder database in the psql shell, trigger a ←↩
vacuum:

rudder=# VACUUM FULL;

And take a coffee.

13.1.3 LDAP database reindexing

In some very rare case, you will encounter some LDAP database entries that are not indexed and used during searches. In that
case, OpenLDAP will output warnings to notify you that they should be.

LDAP database reindexing

Stop OpenLDAP
/etc/init.d/rudder-slapd stop

Reindex the databases
/opt/rudder/sbin/slapindex

Restart OpenLDAP
/etc/init.d/rudder-slapd restart

13.2 Migration, backups and restores

It is advised to backup frequently your Rudder installation in case of a major outage.

These procedures will explain how to backup your Rudder installation.

13.2.1 Backup

This backup procedure will operate on the three principal Rudder data sources:

• The LDAP database

Rudder User Documentation 83 / 89

• The PostgreSQL database

• The configuration-repository folder

It will also backup the application logs.

How to backup a Rudder installation

#~First, backup the LDAP database:
/opt/rudder/sbin/slapcat -l /tmp/rudder-backup-$(date +%Y%m%d).ldif

Second, the PostgreSQL database:
sudo -u postgres pg_dump rudder > /tmp/rudder-backup-$(date +%Y%m%d).sql

#~Or without sudo, use the rudder application password:
pg_dump -U rudder rudder > /tmp/rudder-backup-$(date +%Y%m%d).sql

#~Third, backup the configuration repository:
tar -C /var/rudder -zvcf /tmp/rudder-backup-$(date +%Y%m%d).tar.gz configuration-repository ←↩

/ cfengine-community/ppkeys/

Finally, backup the logs:
tar -C /var/log -zvcf /tmp/rudder-log-backup-$(date +%Y%m%d).tar.gz rudder/

#~And put the backups wherever you want, here /root:
cp /tmp/rudder-backup* /root
cp /tmp/rudder-log-backup* /root

13.2.2 Restore

Of course, after a total machine crash, you will have your backups at hand, but what should you do with it ?

Here is the restoration procedure:

How to restore a Rudder backup

First, follow the standard installation procedure, this one assumes you have a working " ←↩
blank"

Rudder on the machine

Stop Rudder
/etc/init.d/rudder-server-root stop

Drop the OpenLDAP database
rm -rf /var/rudder/ldap/openldap-data/alock /var/rudder/ldap/openldap-data/*.bdb /var/ ←↩

rudder/ldap/openldap-data/__db* /var/rudder/ldap/openldap-data/log*

Import your backups

#~Configuration repository
tar -C /var/rudder -zvxf /root/rudder-backup-XXXXXXXX.tar.gz

#~LDAP backup
/opt/rudder/sbin/slapadd -l /root/rudder-backup-XXXXXXXX.ldif

#~PostgreSQL backup
sudo -u postgres psql -d rudder < /root/rudder-backup-XXXXXXXX.sql
#~or
psql -u rudder -d rudder -W < /root/rudder-backup-XXXXXXXX.sql

#~And restart the machine or just Rudder:
/etc/init.d/rudder-server-root restart

Rudder User Documentation 84 / 89

13.2.3 Migration

To migrate a Rudder installation, just backup and restore your Rudder installation from one machine to another.

Please remember that The CFEngine key restoration is mandatory for the clients to update properly, but if the Rudder server
address changes, the agents will block. You have to delete every root-*.pub key in /var/rudder/cfengine-community/ppkeys/ for
things to work again.

13.3 Application tuning

Some applications used by Rudder can be tuned to your needs, like Apache HTTPd.

13.3.1 Apache HTTPd

The apache HTTPd is used by Rudder as a proxying server, to connect to the Jetty application server.

But it is also widely used as a regular HTTP serving application. You are heavily advised if interested to read the tons of
documentation about it in your Linux distribution website, to learn about what it can do.

13.3.2 Jetty

The Jetty 7 (Hightide) application server is the main application that runs the Rudder code. It is based on the Java programming
language.

About the latter, there is some configuration switches that you might want to tune to obtain better performance with Rudder,
in /opt/rudder/etc/rudder-jetty.conf, whereas the default ones fit the basic recommendations for the minimal Rudder hardware
requirements.

• JAVA_XMX : That parameter tune the total amount of RAM usable / dedicated to the java process. It is what you want to tune
at first to give Rudder some more RAM.

• JAVA_MAXPERMSIZE: That parameter is acceptable for most installations, but you might want to decrease them a bit if
using a machine that is not very powerful / RAM abundant. Increasing them is not really useful.

13.3.3 Java "Out Of Memory Error"

It may happen that you get java.lang.OutOfMemoryError. They can be of several types, but the most common is: "java.lang.OutOfMemoryError:
Java heap space".

This error means that the web application needs more RAM than what was given. It may be linked to a bug where some process
consumed much more memory than needed, but most of the time, it simply means that your system has grownn and needs more
memory.

You can follow the configuration steps described in the following paragraph.

13.3.4 Configure RAM allocated to Jetty

To change the RAM given to Jetty, you have to:

edit /opt/rudder/etc/rudder-jetty.conf with your preferred text editor, for example vim:
vim /opt/rudder/etc/rudder-jetty.conf

modify JAVA_XMX to set the value to your need.
The value is given in MB by default, but you can also use the "G" unit to specify a size ←↩

in GB.

Rudder User Documentation 85 / 89

JAVA_XMX=2G

save your changes, and restart Jetty:
service restart rudder-jetty

The heuristic to choose the amount of memory needed for the web application is described in the Rudder hardware specification
chapter

13.3.5 Optimize PostgreSQL server

The default out-of-the-box configuration of PostgreSQL server is really not compliant for high end (or normal) servers. It uses a
really small amount of memory.

The location of the PostgreSQL server configuration file is usually:

/etc/postgresql/9.x/main/postgresql.conf

On a SuSE system:

/var/lib/pgsql/data/postgresql.conf

13.3.5.1 Suggested values on an high end server

#
Amount of System V shared memory

#
A reasonable starting value for shared_buffers is 1/4 of the memory in your
system:

shared_buffers = 1GB

You may need to set the proper amount of shared memory on the system.
#
$ sysctl -w kernel.shmmax=1073741824
#
Reference:
http://www.postgresql.org/docs/8.4/interactive/kernel-resources.html#SYSVIPC
#
Memory for complex operations

#
Complex query:

work_mem = 24MB
max_stack_depth = 4MB

Complex maintenance: index, vacuum:

maintenance_work_mem = 240MB

Write ahead log

#
Size of the write ahead log:

wal_buffers = 4MB

Query planner

Rudder User Documentation 86 / 89

#
Gives hint to the query planner about the size of disk cache.
#
Setting effective_cache_size to 1/2 of total memory would be a normal
conservative setting:

effective_cache_size = 1024MB

13.3.5.2 Suggested values on a low end server

shared_buffers = 128MB
work_mem = 8MB
max_stack_depth = 3MB
maintenance_work_mem = 64MB
wal_buffers = 1MB
effective_cache_size = 128MB

13.3.6 CFEngine

If you are using Rudder on a highly stressed machine, which has especially slow or busy I/O’s, you might experience a sluggish
CFEngine agent run everytime the machine tries to comply with your Rules.

This is because the CFEngine agent tries to update its class database everytime the agent executes a promise (the cf-lock.db file
in the /var/rudder/cfengine-community/state directory), which even if the database is very light, takes some time if the machine
has a very high iowait value.

In this case, here is a workaround you can use to restore CFEngine’s full speed: you can use a RAMdisk to store CFEngine
states.

You might use this solution either temporarily, to examine a slowness problem, or permanently, to mitigate a known I/O problem
on a specific machine. We do not recommend as of now to use this on a whole IT infrastructure.

Be warned, this solution has only one drawback: you should backup and restore the content of this directory manually in case
of a machine reboot because all the persistent states are stored here, so in case you are using, for example the jobScheduler
Technique, you might encounter an unwanted job execution because CFEngine will have "forgotten" the job state.

Also, note that the mode=0700 is important as CFEngine will refuse to run correctly if the state directory is world readable, with
an error like:

error: UNTRUSTED: State directory /var/rudder/cfengine-community (mode 770) was not private ←↩
!

Here is the command line to use:

How to mount a RAMdisk on CFEngine state directory

How to mount the RAMdisk manually, for a "one shot" test:
mount -t tmpfs -o size=128M,nr_inodes=2k,mode=0700,noexec,nosuid,noatime,nodiratime tmpfs / ←↩

var/rudder/cfengine-community/state

How to put this entry in the fstab, to make the modification permanent
echo "tmpfs /var/rudder/cfengine-community/state tmpfs defaults,size=128M,nr_inodes=2k,mode ←↩

=0700,noexec,nosuid,noatime,nodiratime 0 0" >> /etc/fstab
mount /var/rudder/cfengine-community/state

Rudder User Documentation 87 / 89

Chapter 14

Appendix: Glossary

Active Techniques This is an organized list of the Techniques selected and modified by the user. By default this list is the
same as the Technique Library. Techniques can be disabled or deleted, and then activated again with a simple drag and
drop. Categories can be reorganised according to the desired taxonomy. A Technique can appear only once in the Active
Techniques list.

Applied Policy This is the result of the conversion of a Policy Instance into a set of CFEngine Promises for a particular Node.

cf-execd This CFEngine Community daemon is launching the CFEngine Community Agent cf-agent every 5 minutes.

cf-serverd This CFEngine Community daemon is listening on the network on Rudder Root and Relay servers, serving
policies and files to Rudder Nodes.

CFEngine Nova Managing Windows machines requires the commercial version of CFEngine, called Nova. It needs to open
the port 5308 TCP from the Node to the Rudder Root Server.

CFEngine server Distribute the CFEngine configuration to the nodes.

CFEngine CFEngine is a configuration management software. CFEngine comes from a contraction of “ConFiguration En-
gine”.

Directive This is an instance of a Technique, which allows to set values for the parameters of the latter. Each Directive can have
a unique name. A Directive should be completed with a short and a long description, and a collection of parameters for the
variables defined by the Technique.

Dynamic group Group of Nodes based on search criteria. The search is replayed every time the group is queried. The list will
always contain the nodes that match the criteria, even if the data nodes have changed since the group was created.

LDAP server Store the inventories and the Node configurations.

Port 514, TCP Syslog port, used to centralize reports.

Port 5308, TCP Nova communication port, used by the commercial version of CFEngine, which is required to manage Win-
dows nodes.

Port 5309, TCP CFEngine communication port, used to communicate the policies to the rudder nodes.

Port 80, TCP, for nodes HTTP communication port, used to send inventory and fetch the id of the Rudder Server.

Port 443, TCP, for users HTTPS communication port, used by the users to access to the web interface.

Rudder Node A Node is client computer managed by Rudder. To be managed, a Node must first be accepted as an authorized
node.

Rudder Relay Server Relay servers are an optional component in a Rudder architecture. They can act as a proxy for all network
communications between Rudder agents and a Rudder server. This enables them to be installed in a remote datacenter, or
inside a restricted network zone, to limit the network flows required to use Rudder.

Rudder User Documentation 88 / 89

Rudder Root Server This is the core of the Rudder infrastructure. This server must be a dedicated machine (either virtual of
physical), and contains the main application components: the web interface, databases, configuration data, logs. . .

Rudder Rudder is a Drift Assesment software. Rudder associates Asset Management and Configuration Management. Rudder
is a Free Software developped by Normation.

Rule It is the application of one or more directives to a group of nodes. It is the glue between both Asset Management and
Configuration Management parts of the application.

SQL server Store the received reports from the nodes.

Static group Group of Nodes based on search criteria. The search is performed once and the resulting list of Nodes is stored.
Once declared, the list of nodes will not change, except manual change.

Technique Library This is an organized list of all available Techniques. This list can’t be modified: every change made by a
user will be applied to the Active Techniques.

Technique This is a configuration skeleton, adapted to a function or a particular service (e.g. DNS resolver configuration). This
skeleton includes the configuration logic for this function or service, and can be set according to a list of variables (in the
same example: IP addresses of DNS servers, the default search box, . . .)

Web server application Execute the web interface and the server that handles the new inventories.

Web server front-end Handle the connection to the Web interface, the received inventories and the sharing of the UUID
Rudder Root Server.

Rudder User Documentation 89 / 89

License

Copyright © 2011-2013 Normation SAS

Rudder User Documentation by Normation SAS is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License.

Permissions beyond the scope of this license may be available at Normation SAS.

External contributions:

I like buttons 3a icon set for admonition blocks by MazeNL77 is free for commercial usage.

http://normation.com
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://normation.com
http://mazenl77.deviantart.com/art/I-like-buttons-3a-113122067
http://mazenl77.deviantart.com/

	Online version
	Introduction
	Concepts
	Rudder functions
	Asset management concepts
	New Nodes
	Search Nodes
	Groups of Nodes

	Configuration management concepts

	Rudder components
	Specifications for Rudder Nodes
	Specifications for Rudder Root Server
	Hardware specifications
	Supported Operating Systems
	Packages
	Software dependencies and third party components

	Configure the network
	Mandatory flows
	Optional flows
	DNS - Name resolution

	Install Rudder Server
	Install Rudder Root server on Debian or Ubuntu
	Add the Rudder packages repository
	Java on Debian/Ubuntu
	Install your Rudder Root Server
	Compatibility with RHEL/CentOS 5 and syslogd

	Install Rudder Root server on SLES
	Configure the package manager
	Add the Rudder packages repository
	Install your Rudder Root Server

	Install Rudder Root server on RedHat or CentOS
	Java on RHEL/CentOS
	Add the Rudder packages repository
	Install your Rudder Root Server

	Initial configuration of your Rudder Root Server
	Validate the installation

	Install Rudder Agent
	Install Rudder Agent on Debian or Ubuntu
	Install Rudder Agent on RedHat or CentOS
	Install Rudder Agent on SLES
	Configure and validate
	Configure Rudder Agent
	Start Rudder Agent:
	Validate new Node
	Force Rudder Agent execution

	Upgrade Rudder
	Caution cases
	Upgrading from Rudder 2.8 or 2.9
	Upgrading from Rudder 2.6 or 2.7
	Known bugs

	Upgrade Rudder on Debian or Ubuntu
	Upgrade Rudder on RedHat or CentOS
	Upgrade Rudder on SLES

	Rudder Web Interface
	Authentication
	Presentation of Rudder Web Interface
	Rudder Home
	Node Management
	Configuration Management
	Administration

	Units supported as search parameters
	Bytes and multiples
	Convenience notation
	Supported units

	Node Management
	Node Inventory
	Accept new Nodes
	Search Nodes
	Quick Search
	Advanced Search

	Group of Nodes

	Configuration Management
	Techniques
	Concepts
	Manage the Techniques
	Available Techniques
	Application management
	Distributing files
	File state configuration
	System settings: Miscellaneous
	System settings: Networking
	System settings: Process
	System settings: Remote access
	System settings: User management

	Directives
	Rules
	Parameters
	Compliance
	Validation workflow in Rudder
	What is a Change request ?
	Change request status
	Change request management page
	Change request detail page

	How to create a Change request ?
	How to validate a Change request ?
	Roles
	Self Validations

	Change request and conflicts
	Notifications:
	Pending change requests
	Change already proposed on Rule/Directive/Group

	Administration
	Archives
	Archive usecases
	Changes testing
	Changes qualification

	Concepts
	Archiving
	Importing configuration
	Deploy a preconfigured instance

	Event Logs
	Policy Server
	Configure allowed networks
	Clear caches
	Reload dynamic groups

	Plugins
	Install a plugin

	Basic administration of Rudder services
	Restart the agent of the node
	Restart the root rudder service
	Restart everything
	Restart only one component

	Technique upgrade
	Initial installation
	Upgrade
	Upgrading the Technique library

	Password upgrade
	User management
	Configuration of the users using a XML file
	Generality
	Passwords

	Configuring an LDAP authentication provider for Rudder
	LDAP is only for authentication
	Enable LDAP authentication

	Authorization management
	Pre-defined roles
	Custom roles

	Going further

	Usecases
	Dynamic groups by operating system
	Library of preventive policies
	Standardizing configurations

	Advanced usage
	Node management
	Reinitialize policies for a Node
	Installation of the Rudder Agent
	Static files
	Generated files
	Services
	Configuration

	Rudder Agent interactive
	Processing new inventories on the server
	Verify the inventory has been received by the Rudder Root Server
	Process incoming inventories
	Validate new Nodes
	Prepare policies for the Node

	Agent execution frequency on nodes
	Checking configuration (CFEngine)
	Inventory (FusionInventory)

	Password management
	Configuration of the postgres database password
	Configuration of the OpenLDAP manager password
	Configuration of the WebDAV access password

	Policy generation
	Regenerate now button

	Technique creation
	Prequisites
	Define your objective
	Initialize your new Technique
	Define variables
	First test in the Rudder interface

	Implement the behavior
	Read in the variables from Rudder
	Add reporting

	REST API
	Default setup
	Rudder Authentication
	Apache access rules
	User for REST actions

	Status
	Promises regeneration
	Dynamic groups regeneration
	Technique library reload
	Archives manipulation
	Archiving:
	Listing:
	Restoring a given archive:
	Restoring the latest available archive (from a previously archived action, and so from a Git tag):
	Restoring the latest available commit (use Git HEAD):
	Downloading a ZIP archive

	Relay servers
	Installation procedure - On the relay
	Install Rudder agent
	Install the required dependencies and enable required modules
	Create the necessary directory and adjust the permissions
	Please create the appropriate file for your OS, and copy the following content in it

	Installation procedure - On the root server
	Set the node as a Rudder relay

	Result
	Adding nodes to a relay server

	Server migration
	What files you need
	Handle configuration files
	Copy /var/rudder/configuration-repository
	Use Archive feature of Rudder

	Handle CFEngine keys
	Keep your CFEngine keys
	Change CFEngine keys

	On your nodes

	Mirroring Rudder repositories

	Reference
	Rudder Server data workflow
	Rudder Agent workflow
	Request data from Rudder Server
	Launch processes
	Identify Rudder Root Server
	Inventory
	Syslog
	Apply Directives

	Configuration files for a Node
	Configuration files for Rudder Server

	Handbook
	Database maintenance
	Automatic PostgreSQL table maintenance
	PostgreSQL database vacuum
	LDAP database reindexing

	Migration, backups and restores
	Backup
	Restore
	Migration

	Application tuning
	Apache HTTPd
	Jetty
	Java "Out Of Memory Error"
	Configure RAM allocated to Jetty
	Optimize PostgreSQL server
	Suggested values on an high end server
	Suggested values on a low end server

	CFEngine

	Appendix: Glossary

